Speckle mitigation for wavefront sensing in the presence of weak turbulence

被引:11
|
作者
Van Zandt, Noah R. [1 ]
Spencer, Mark F. [1 ,2 ]
Fiorino, Steven T. [2 ]
机构
[1] Directed Energy Directorate, Air Force Res Lab, 3550 Aberdeen Ave SE, Albuquerque, NM 87117 USA
[2] Air Force Inst Technol, Dept Engn Phys, 2950 Hobson Way, Dayton, OH 45433 USA
关键词
BEAM PROJECTION; OPTICS MODELS; CONTRAST; PERFORMANCE; DEPENDENCE; SENSORS;
D O I
10.1364/AO.58.002300
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
When measuring atmospheric turbulence along the propagation path to an extended non-cooperative target, a wavefront sensor normally suffers from severe noise due to speckle. In this work, we quantify the benefits of speckle mitigation via polychromatic illumination for a Shack-Hartmann wavefront sensor. We obtain results over a wide range of conditions by using the spectral-slicing approach to polychromatic wave-optics simulations. To quantify speckle noise, even when turbulence is present, we introduce a metric involving racetrack-mode strength in slope-discrepancy space. The results show that polychromatic illumination greatly reduces speckle noise under realistic conditions. Even with near worst-case conditions, 15 coherence lengths per resolution cell reduce the wavefront-measurement error by 56%.
引用
收藏
页码:2300 / 2310
页数:11
相关论文
共 50 条
  • [1] Open-loop wavefront sensing in the presence of speckle and weak scintillation
    Burrell, Derek J.
    Spencer, Mark F.
    Driggers, Ronald G.
    [J]. OPTICS COMMUNICATIONS, 2024, 572
  • [2] Temporally averaged speckle noise in wavefront sensors for beam projection in weak turbulence
    Allan, Gregory W.
    Allured, Ryan
    Ashcom, Jonathan
    Liu, Lulu
    Cahoy, Kerri
    [J]. APPLIED OPTICS, 2021, 60 (16) : 4723 - 4731
  • [3] Compressive wavefront sensing with weak values
    Howland, Gregory A.
    Lum, Daniel J.
    Howell, John C.
    [J]. OPTICS EXPRESS, 2014, 22 (16): : 18870 - 18880
  • [4] A strategy for sensing the petal mode in the presence of AO residual turbulence with the pyramid wavefront sensor
    Levraud, Nicolas
    Chambouleyron, Vincent
    Sauvage, Jean Francois
    Neichel, Benoit
    Cisse, Mahawa
    Fauvarque, Olivier
    Agapito, Guido
    Plantet, Cedric
    Cheffot, Anne Laure
    Pinna, Enrico
    Esposito, Simone
    Fusco, Thierry
    [J]. ASTRONOMY & ASTROPHYSICS, 2024, 682
  • [5] Wavefront sensing and adaptive optics in strong turbulence
    Mackey, R
    Dainty, C
    [J]. OPTO-IRELAND 2005: PHOTONIC ENGINEERING, 2005, 5827 : 23 - 29
  • [6] Analysis of speckle-beacon size impact on wavefront sensing and closed-loop control in deep turbulence conditions
    Vorontsov, Mikhail A.
    Lachinova, Svetlana L.
    Polnau, Ernst
    [J]. JOURNAL OF OPTICS, 2024, 26 (08)
  • [7] Wavefront adaptive sensing for radar spread clutter mitigation
    Bilik, Igal
    Kazanci, Oguz
    Krolik, Jeffrey
    [J]. 2007 2ND IEEE INTERNATIONAL WORKSHOP ON COMPUTATIONAL ADVANCES IN MULTI-SENSOR ADAPTIVE PROCESSING, 2007, : 273 - 276
  • [8] Wavefront Sensing For Anisotropic Turbulence Using Digital Holography
    Thurman, Samuel T.
    Gatt, Philip
    Alley, Thomas
    [J]. UNCONVENTIONAL IMAGING AND WAVEFRONT SENSING XII, 2016, 9982
  • [9] Blind deconvolution of speckle images constrained by wavefront sensing data
    Leung, WYV
    Clare, RM
    Lane, RG
    [J]. IMAGE RECONSTRUCTION FROM INCOMPLETE DATA II, 2002, 4792 : 44 - 54
  • [10] Compressed Sensing in the Presence of Speckle Noise
    Zhou, Wenda
    Jalali, Shirin
    Maleki, Arian
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2022, 68 (10) : 6964 - 6980