Redox Chemistry Dominates the Degradation and Decomposition of Metal Halide Perovskite Optoelectronic Devices

被引:197
|
作者
Zhao, Lianfeng [1 ]
Kerner, Ross A. [1 ]
Xiao, Zhengguo [1 ]
Lin, YunHui L. [1 ]
Lee, Kyung Min [1 ]
Schwartz, Jeffrey [2 ]
Rand, Barry P. [1 ,3 ]
机构
[1] Princeton Univ, Dept Elect Engn, Princeton, NJ 08544 USA
[2] Princeton Univ, Dept Chem, Princeton, NJ 08544 USA
[3] Princeton Univ, Andlinger Ctr Energy & Environm, Princeton, NJ 08544 USA
来源
ACS ENERGY LETTERS | 2016年 / 1卷 / 03期
基金
美国国家科学基金会;
关键词
SOLAR-CELLS; SINGLE-CRYSTALS; EFFICIENT; STATE; STABILITY; ENERGY; FILMS;
D O I
10.1021/acsenergylett.6b00320
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We report a comprehensive study of the chemistry of perovskite optoelectronic device degradation and show that redox reactions are fundamental to the degradation process for CH3NH3PbI3, CsPbI3, and CsPbBr3 perovskites with Ag, Al, Yb, or Cr contacts. Using in situ Xray diffraction measurements, we study the chemistry of CH3NH3PbI3 perovskite devices equipped with Al electrodes; we find that Al rapidly reduces Pb2+ to Pb, converting CH3NH3PbI3 first to (CH3NH3)(4)PbI6.2H(2)O and then to CH3NH3I. In situ scanning electron microscopy measurements show that moisture enables continued reaction of the Al and perovskite layers by facilitating ion diffusion, before serving as a decomposition reagent for the perovskite film. Redox reactions follow what is expected based on standard electrochemical potentials for Al, Cr, and Yb; for Ag, the redox chemistry is enabled by the presence of iodide. We emphasize that critical chemical reactions can stem from intrinsic interfacial interactions between the layers in a device and not necessarily from external agents; degradation studies must consider the device as an entity, rather than focusing only on the stability of perovskite films.
引用
收藏
页码:595 / 602
页数:8
相关论文
共 50 条
  • [1] Metal halide perovskite nanocrystals and their applications in optoelectronic devices
    Lu, Po
    Lu, Min
    Wang, Hua
    Sui, Ning
    Shi, Zhifeng
    Yu, William W.
    Zhang, Yu
    [J]. INFOMAT, 2019, 1 (04) : 430 - 459
  • [2] Defect engineering of metal halide perovskite optoelectronic devices
    Zhang, Xuanyu
    Wang, Xiongbin
    Liu, Huan
    Chen, Rui
    [J]. PROGRESS IN QUANTUM ELECTRONICS, 2022, 86
  • [3] Neuromorphic optoelectronic devices based on metal halide perovskite
    Liu, Qiang
    Yuan, Yiming
    Liu, Junchi
    Wang, Wenbo
    Chen, Jiaxin
    Xu, Wentao
    [J]. MATERIALS TODAY ELECTRONICS, 2024, 8
  • [4] Interface and Defect Engineering for Metal Halide Perovskite Optoelectronic Devices
    Han, Tae-Hee
    Tan, Shaun
    Xue, Jingling
    Meng, Lei
    Lee, Jin-Wook
    Yang, Yang
    [J]. ADVANCED MATERIALS, 2019, 31 (47)
  • [5] The evolution and future of metal halide perovskite-based optoelectronic devices
    Wu, Shengfan
    Chen, Ziming
    Yip, Hin-Lap
    Jen, Alex K-Y
    [J]. MATTER, 2021, 4 (12) : 3814 - 3834
  • [6] Advances in Inkjet-Printed Metal Halide Perovskite Photovoltaic and Optoelectronic Devices
    Mathies, Florian
    List-Kratochvil, Emil J. W.
    Unger, Eva L.
    [J]. ENERGY TECHNOLOGY, 2020, 8 (04)
  • [7] Organic/Inorganic Metal Halide Perovskite Optoelectronic Devices beyond Solar Cells
    Sun, Jiachen
    Wu, Jiang
    Tong, Xin
    Lin, Feng
    Wang, Yanan
    Wang, Zhiming M.
    [J]. ADVANCED SCIENCE, 2018, 5 (05)
  • [8] Metal Halide Perovskite Nanowires: Controllable Synthesis, Mechanism, and Application in Optoelectronic Devices
    Lu, Yangbin
    Qu, Kang
    Zhang, Tao
    He, Qingquan
    Pan, Jun
    [J]. NANOMATERIALS, 2023, 13 (03)
  • [9] Metal Halide Perovskite Optoelectronic Material and Device
    Zhao, Yixin
    Han, Hongwei
    [J]. ACTA PHYSICO-CHIMICA SINICA, 2021, 37 (04)
  • [10] Strain engineering in metal halide perovskite materials and devices: Influence on stability and optoelectronic properties
    Wang, Mengru
    Ni, Zhenyi
    Xiao, Xun
    Zhou, Ying
    Huang, Jinsong
    [J]. CHEMICAL PHYSICS REVIEWS, 2021, 2 (03):