Spatial perturbations of one-dimensional spin systems

被引:2
|
作者
Handjani, SJ [1 ]
机构
[1] Univ Mississippi, Dept Math, University, MS 38677 USA
关键词
spin systems; additive process; spatially inhomogeneous; survival;
D O I
10.1016/S0304-4149(98)00105-7
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider nearest-neighbor, additive, spin systems on Z(+), and show that changing the flip rates at a finite number of sites does not affect survival of the process. We also extend this result to the case of the biased voter model on Z. (C) 1999 Elsevier Science B.V. All rights reserved.
引用
下载
收藏
页码:73 / 79
页数:7
相关论文
共 50 条
  • [1] Entanglement in one-dimensional spin systems
    Osterloh, A
    Amico, L
    Plastina, F
    Fazio, R
    QUANTUM INFORMATION AND COMPUTATION II, 2004, 5436 : 150 - 161
  • [2] Spin effects in one-dimensional systems
    Sfigakis, F.
    Graham, A. C.
    Thomas, K. J.
    Pepper, M.
    Ford, C. J. B.
    Ritchie, D. A.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2008, 20 (16)
  • [3] Decay of spin coherences in one-dimensional spin systems
    Kaur, G.
    Ajoy, A.
    Cappellaro, P.
    NEW JOURNAL OF PHYSICS, 2013, 15
  • [4] ONE-DIMENSIONAL PERTURBATIONS OF THE SHIFT
    NAKAMURA, Y
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 1993, 17 (03) : 373 - 403
  • [5] ONE-DIMENSIONAL PERTURBATIONS OF OPERATORS
    STAMPFLI, JG
    PACIFIC JOURNAL OF MATHEMATICS, 1984, 115 (02) : 481 - 491
  • [6] VALENCE AND SPIN FLUCTUATIONS IN ONE-DIMENSIONAL SYSTEMS
    SCHLOTTMANN, P
    PHYSICA B, 1991, 171 (1-4): : 30 - 38
  • [7] ONE-DIMENSIONAL PERTURBATIONS OF ISOMETRIES
    NAKAMURA, Y
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 1986, 9 (02) : 288 - 294
  • [8] Dynamics of entanglement in one-dimensional spin systems
    Amico, L
    Osterloh, A
    Plastina, F
    Fazio, R
    Massimo Palma, G
    PHYSICAL REVIEW A, 2004, 69 (02): : 24
  • [9] Spin conductance in one-dimensional spin-phonon systems
    Louis, K
    Zotos, X
    PHYSICAL REVIEW B, 2005, 72 (21)
  • [10] Dynamics of inhomogeneous excitations in the one-dimensional spin systems
    Berim, G.O.
    Zhurnal Eksperimental'noi i Teoreticheskoi Fiziki, 1992, 102 (01):