Spline approximation of advection-diffusion problems using upwind type collocation nodes

被引:10
|
作者
Funaro, D
Pontrelli, G
机构
[1] Univ Modena, Dipartimento Matemat, I-41100 Modena, Italy
[2] CNR, Ist Appl Calcolo, I-00161 Rome, Italy
关键词
spline collocation; advection-diffusion equation; stabilization; numerical method;
D O I
10.1016/S0377-0427(99)00207-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A spline collocation method for linear advection-diffusion equations is proposed. The method is based on an operator-dependent collocation grid, and provides stabilized approximated solutions, with respect to the coefficient of the diffusive term, when problems are advection dominated. (C) 1999 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:141 / 153
页数:13
相关论文
共 50 条
  • [1] STABILITY OF THE CHEBYSHEV COLLOCATION APPROXIMATION TO THE ADVECTION-DIFFUSION EQUATION
    MOFID, A
    PEYRET, R
    [J]. COMPUTERS & FLUIDS, 1993, 22 (4-5) : 453 - 465
  • [2] A NEW SCHEME FOR THE APPROXIMATION OF ADVECTION-DIFFUSION EQUATIONS BY COLLOCATION
    FUNARO, D
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 1993, 30 (06) : 1664 - 1676
  • [3] FV Upwind Stabilization of FE Discretizations for Advection-Diffusion Problems
    Brunner, Fabian
    Frank, Florian
    Knabner, Peter
    [J]. FINITE VOLUMES FOR COMPLEX APPLICATIONS VII - METHODS AND THEORETICAL ASPECTS, 2014, 77 : 177 - 185
  • [4] An upwind-mixed method for advection-diffusion problems with static condensation
    Bottasso, CL
    Causin, P
    Sacco, R
    [J]. APPLIED AND INDUSTRIAL MATHEMATICS IN ITALY, 2005, 69 : 167 - 178
  • [5] An upwind numerical solution of nonlinear advection-diffusion problems with a moving heat source
    N. Al-Khalidy
    [J]. Heat and Mass Transfer, 1998, 34 : 287 - 293
  • [6] An upwind numerical solution of nonlinear advection-diffusion problems with a moving heat source
    Al-Khalidy, N
    [J]. HEAT AND MASS TRANSFER, 1998, 34 (04) : 287 - 293
  • [7] SPECTRAL APPROXIMATION TO ADVECTION-DIFFUSION PROBLEMS BY THE FICTITIOUS INTERFACE METHOD
    FRATI, A
    PASQUARELLI, F
    QUARTERONI, A
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 1993, 107 (02) : 201 - 212
  • [8] Finite Difference and Spline Approximation for Solving Fractional Stochastic Advection-Diffusion Equation
    Farshid Mirzaee
    Khosro Sayevand
    Shadi Rezaei
    Nasrin Samadyar
    [J]. Iranian Journal of Science and Technology, Transactions A: Science, 2021, 45 : 607 - 617
  • [9] Finite Difference and Spline Approximation for Solving Fractional Stochastic Advection-Diffusion Equation
    Mirzaee, Farshid
    Sayevand, Khosro
    Rezaei, Shadi
    Samadyar, Nasrin
    [J]. IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2021, 45 (02): : 607 - 617
  • [10] Isogeometric analysis in advection-diffusion problems: Tension splines approximation
    Manni, Carla
    Pelosi, Francesca
    Sampoli, M. Lucia
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 236 (04) : 511 - 528