Critical dynamics of the two-dimensional random-bond Potts model with nonequilibrium Monte Carlo simulations

被引:7
|
作者
Fan, Shuangli [1 ]
Zhong, Fan [1 ]
机构
[1] Zhongshan Univ, Sch Phys & Engn, State Key Lab Optoelect Mat & Technol, Guangzhou 510275, Guangdong, Peoples R China
来源
PHYSICAL REVIEW E | 2009年 / 79卷 / 01期
关键词
critical exponents; Monte Carlo methods; Potts model; renormalisation; specific heat; MAGNETIC CRITICAL-BEHAVIOR; SHORT-TIME DYNAMICS; RENORMALIZATION-GROUP; PHASE-TRANSITIONS; CRITICAL RELAXATION; UNIVERSALITY; FERROMAGNET; EXPONENTS;
D O I
10.1103/PhysRevE.79.011122
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study two-dimensional q-state random-bond Potts models for both q=8 and q=5 with a linearly varying temperature. By applying a successive Monte Carlo renormalization group procedure, both the static and dynamic critical exponents are obtained for randomness amplitudes (the strong to weak coupling ratio) of r(0)=3, 10, 15, and 20. The correlation length exponent nu increases with disorder from less than to larger than unity and this variation is justified by the good collapse of the specific heat near the critical region. The specific heat exponent is obtained by the usual hyperscaling relation alpha=2-d nu and thus indicates no possibility of the activated dynamic scaling. Both r(0) and q have effects on the critical dynamics of the disordered systems, which can be seen from variations of the rate exponent, the hysteresis exponent, and the dynamic critical exponent. Implications of these results are discussed.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Monte Carlo simulations of phase transitions in a two-dimensional random-bond Potts model
    Paredes, R
    Valbuena, J
    [J]. STATISTICAL MECHANICS IN PHYSICS AND BIOLOGY, 1997, 463 : 263 - 268
  • [2] Dynamic Monte Carlo simulations of the three-dimensional random-bond Potts model
    Yin, JQ
    Zheng, B
    Trimper, S
    [J]. PHYSICAL REVIEW E, 2005, 72 (03):
  • [3] Critical relaxation in two-dimensional random-bond Potts models
    Chen, S
    Landau, DP
    [J]. PHYSICAL REVIEW E, 1997, 55 (01): : 40 - 44
  • [4] Short-time dynamics and magnetic critical behavior of the two-dimensional random-bond Potts model
    Ying, HP
    Harada, K
    [J]. PHYSICAL REVIEW E, 2000, 62 (01): : 174 - 178
  • [5] Dynamic scaling and universality of the two-dimensional random-bond Potts model
    Ying, HP
    Bian, BJ
    Ji, DR
    Schülke, L
    [J]. CHINESE PHYSICS LETTERS, 2001, 18 (10) : 1404 - 1407
  • [6] Magnetic critical behavior of two-dimensional random-bond Potts ferromagnets in confined geometries
    Chatelain, C
    Berche, B
    [J]. PHYSICAL REVIEW E, 1999, 60 (04): : 3853 - 3865
  • [7] Critical behavior of the two-dimensional random-bond Potts model: A short-time dynamic approach
    Yin, JQ
    Zheng, B
    Trimper, S
    [J]. PHYSICAL REVIEW E, 2004, 70 (05):
  • [8] Critical Interfaces in the Random-Bond Potts Model
    Jacobsen, Jesper L.
    Le Doussal, Pierre
    Picco, Marco
    Santachiara, Raoul
    Wiese, Kay Joerg
    [J]. PHYSICAL REVIEW LETTERS, 2009, 102 (07)
  • [9] Interfacial adsorption in two-dimensional pure and random-bond Potts models
    Fytas, Nikolaos G.
    Theodorakis, Panagiotis E.
    Malakis, Anastasios
    [J]. PHYSICAL REVIEW E, 2017, 95 (03)
  • [10] Numerical results for the two-dimensional random-bond three-state Potts model
    Picco, M
    [J]. PHYSICAL REVIEW B, 1996, 54 (21): : 14930 - 14933