EXTRACTION OF THEMES FROM AERIAL IMAGERY USING LATENT DIRICHLET ALLOCATION

被引:0
|
作者
Deshpande, Shailesh [1 ]
Ladha, Shamsuddin [1 ]
Aggarwal, Hemant [2 ]
Yadav, Piyush [1 ]
机构
[1] TATA Res Dev & Design Ctr, Pune, Maharashtra, India
[2] Indraprastha Inst Informat Technol, Delhi, India
关键词
Thematic classification; Generative model; Latent Dirichlet Allocation; Urban planning;
D O I
暂无
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
This paper presents the generative image processing model for extracting themes from aerial imagery. We model image as a collection of themes and each theme as a collection of objects. We learn urban themes using unsupervised Latent Dirichlet Allocation. Further, we use the learned topic (theme) model directly to infer some of the important parameters of facility management. On a test dataset of the port city of Zeebruges, our approach successfully identified open container parking lot, occupied parking lot, and open spaces in urban areas. Overall theme accuracy of our approach is about 83%.
引用
收藏
页码:4770 / 4773
页数:4
相关论文
共 50 条
  • [1] Uncovering the themes and trends in crowdfunding research using Latent Dirichlet Allocation
    Rejeb, Abderahman
    Rejeb, Karim
    Appolloni, Andrea
    Treiblmaier, Horst
    Iranmanesh, Mohammad
    MANAGEMENT REVIEW QUARTERLY, 2024,
  • [2] Extraction of Proper Names from Myanmar Text Using Latent Dirichlet Allocation
    Win, Yuzana
    Masada, Tomonari
    2016 CONFERENCE ON TECHNOLOGIES AND APPLICATIONS OF ARTIFICIAL INTELLIGENCE (TAAI), 2016, : 96 - 103
  • [3] Feature extraction for document text using Latent Dirichlet Allocation
    Prihatini, P. M.
    Suryawan, I. K.
    Mandia, I. N.
    2ND INTERNATIONAL JOINT CONFERENCE ON SCIENCE AND TECHNOLOGY (IJCST) 2017, 2018, 953
  • [4] Extraction of the Financial Policy Topics by Latent Dirichlet Allocation
    Shirota, Yukari
    Hashimoto, Takako
    Sakura, Tamaki
    TENCON 2014 - 2014 IEEE REGION 10 CONFERENCE, 2014,
  • [5] An Approach for Automatic Aspect Extraction by Latent Dirichlet Allocation
    Das, Subha Jyoti
    Chakraborty, Basabi
    2019 IEEE 10TH INTERNATIONAL CONFERENCE ON AWARENESS SCIENCE AND TECHNOLOGY (ICAST 2019), 2019, : 407 - 412
  • [6] Answer Extraction System Based on Latent Dirichlet Allocation
    Ali, Mohammed A. S.
    Abdou, Sherif M.
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2016, 7 (04) : 462 - 465
  • [7] Semantic latent dirichlet allocation for automatic topic extraction
    Bhutada, Sunil
    Balaram, V. V. S. S. S.
    Bulusu, Vishnu Vardhan
    JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES, 2016, 37 (03): : 449 - 469
  • [8] Topic Extraction and Sentiment Classification by using Latent Dirichlet Markov Allocation and SentiWordNet
    Kaur, Preet Chandan
    Ghorpade, Tushar
    Mane, Vanita
    INTERNATIONAL CONFERENCE ON ADVANCES IN INFORMATION COMMUNICATION TECHNOLOGY & COMPUTING, 2016, 2016,
  • [9] Mining Sentiments from Songs Using Latent Dirichlet Allocation
    Sharma, Govind
    Murty, M. Narasimha
    ADVANCES IN INTELLIGENT DATA ANALYSIS X: IDA 2011, 2011, 7014 : 328 - 339
  • [10] Latent Dirichlet allocation
    Blei, DM
    Ng, AY
    Jordan, MI
    JOURNAL OF MACHINE LEARNING RESEARCH, 2003, 3 (4-5) : 993 - 1022