Fast LCMV-Based Methods for Fundamental Frequency Estimation

被引:19
|
作者
Jensen, Jesper Rindom [1 ]
Glentis, George-Othon [2 ]
Christensen, Mads Graesboll [1 ]
Jakobsson, Andreas [3 ]
Jensen, Soren Holdt [4 ]
机构
[1] Aalborg Univ, Dept Architecture Design & Media Technol, Audio Anal Lab, DK-9220 Aalborg, Denmark
[2] Univ Peloponnese, Dept Sci & Technol Telecommun, Tripolis 22100, Greece
[3] Lund Univ, Dept Math Stat, SE-22100 Lund, Sweden
[4] Aalborg Univ, Dept Elect Syst, DK-9220 Aalborg, Denmark
基金
瑞典研究理事会;
关键词
Data adaptive estimators; efficient algorithms; fundamental frequency estimation; optimal filtering; PITCH ESTIMATION; IMPLEMENTATION; DISPLACEMENT; ALGORITHMS; CAPON; APES;
D O I
10.1109/TSP.2013.2258341
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Recently, optimal linearly constrained minimum variance (LCMV) filtering methods have been applied to fundamental frequency estimation. Such estimators often yield preferable performance but suffer from being computationally cumbersome as the resulting cost functions are multimodal with narrow peaks and require matrix inversions for each point in the search grid. In this paper, we therefore consider fast implementations of LCMV-based fundamental frequency estimators, exploiting the estimators' inherently low displacement rank of the used Toeplitz-like data covariance matrices, using as such either the classic time domain averaging covariance matrix estimator, or, if aiming for an increased spectral resolution, the covariance matrix resulting from the application of the recent iterative adaptive approach (IAA). The proposed exact implementations reduce the required computational complexity with several orders of magnitude, but, as we show, further computational savings can be obtained by the adoption of an approximative IAA-based data covariance matrix estimator, reminiscent of the recently proposed Quasi-Newton IAA technique. Furthermore, it is shown how the considered pitch estimators can be efficiently updated when new observations become available. The resulting time-recursive updating can reduce the computational complexity even further. The experimental results show that the performances of the proposed methods are comparable or better than that of other competing methods in terms of spectral resolution. Finally, it is shown that the time-recursive implementations are able to track pitch fluctuations of synthetic as well as real-life signals.
引用
收藏
页码:3159 / 3172
页数:14
相关论文
共 50 条
  • [1] A replicating LCMV-based vaccine for the treatment of solid tumors
    Purde, Mette-Triin
    Cupovic, Jovana
    Palmowski, Yannick A.
    Makky, Ahmad
    Schmidt, Sarah
    Rochwarger, Alexander
    Hartmann, Fabienne
    Stemeseder, Felix
    Lercher, Alexander
    Abdou, Marie-Therese
    Bomze, David
    Besse, Lenka
    Berner, Fiamma
    Tueting, Thomas
    Hoelzel, Michael
    Bergthaler, Andreas
    Kochanek, Stefan
    Ludewig, Burkhard
    Lauterbach, Henning
    Orlinger, Klaus K.
    Bald, Tobias
    Schietinger, Andrea
    Schuerch, Christian
    Ring, Sandra S.
    Flatz, Lukas
    [J]. MOLECULAR THERAPY, 2024, 32 (02) : 426 - 439
  • [2] A Blind LCMV-Based CFO Estimation for MC-CDMA Systems Over Multipath Fading Channels
    Chen, Tung-Chou
    Lin, Tsui-Tsai
    [J]. WIRELESS PERSONAL COMMUNICATIONS, 2013, 72 (04) : 2263 - 2279
  • [3] A Blind LCMV-Based CFO Estimation for MC-CDMA Systems Over Multipath Fading Channels
    Tung-Chou Chen
    Tsui-Tsai Lin
    [J]. Wireless Personal Communications, 2013, 72 : 2263 - 2279
  • [4] Efficacy of LCMV-based cancer immunotherapies is unleashed by intratumoral injections of polyI:C
    Gomar, Celia
    Di Trani, Claudia Augusta
    Bella, Angela
    Arrizabalaga, Leire
    Gonzalez-Gomariz, Jose
    Fernandez-Sendin, Myriam
    Alvarez, Maite
    Russo-Cabrera, Joan Salvador
    Ardaiz, Nuria
    Aranda, Fernando
    Schippers, Timo
    Quintero, Marisol
    Melero, Ignacio
    Orlinger, Klaus K.
    Lauterbach, Henning
    Berraondo, Pedro
    [J]. JOURNAL FOR IMMUNOTHERAPY OF CANCER, 2024, 12 (04)
  • [5] LCMV-Based Reduced-Rank Beamforming Algorithm With Enhanced Tracking Capability
    Zilli, Guilherme Martignago
    Pitz, Ciro Andre
    Ortiz Batista, Eduardo Luiz
    Seara, Rui
    [J]. IEEE WIRELESS COMMUNICATIONS LETTERS, 2016, 5 (03) : 328 - 331
  • [6] A FAST ALGORITHM FOR MAXIMUM LIKELIHOOD-BASED FUNDAMENTAL FREQUENCY ESTIMATION
    Nielsen, Jesper Kjaer
    Jensen, Tobias Lindstrom
    Jensen, Jesper Rindom
    Christensen, Mads Grsboll
    Jensen, Soren Holdt
    [J]. 2015 23RD EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2015, : 589 - 593
  • [7] FAST AND STATISTICALLY EFFICIENT FUNDAMENTAL FREQUENCY ESTIMATION
    Nielsen, Jesper Kjaer
    Jensen, Tobias Lindstrom
    Jensen, Jesper Rindom
    Christensen, Mads Graesboll
    Jensen, Soren Holdt
    [J]. 2016 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING PROCEEDINGS, 2016, : 86 - 90
  • [8] Single-Channel LCMV-Based Adaptive Beamforming With Time-Modulated Array
    Ni, Gang
    Song, Yang
    Chen, Jingfeng
    He, Chong
    Jin, Ronghong
    [J]. IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2020, 19 (11): : 1881 - 1885
  • [9] Fast algorithms for fundamental frequency estimation in autoregressive noise
    Quinn, Barry Gerard
    Nielsen, Jesper Kjaer
    Christensen, Mads Graesboll
    [J]. SIGNAL PROCESSING, 2021, 180
  • [10] Live-attenuated LCMV-based vector for active immunotherapy of HPV16+cancer.
    Schmidt, Sarah
    Bonilla, Weldy V.
    Pauzuolis, Mindaugas
    Reiter, Andrea
    Kleissner, Theresa
    Oeler, Daniel
    Stemeseder, Felix
    Berka, Ursula
    Kiefmann, Bettina
    Schulha, Sophie
    Matushansky, Igor
    Merkler, Doron
    Pinschewer, Daniel
    Orlinger, Klaus Karl
    [J]. JOURNAL OF CLINICAL ONCOLOGY, 2019, 37 (15)