Reinke's edema and Nodules identification in vowels using spectral features and pitch jitter

被引:4
|
作者
Cordeiro, Hugo Tito [1 ,2 ]
Fonseca, Jose Manuel [1 ]
Ribeiro, Carlos Meneses [2 ]
机构
[1] New Univ Lisbon FCT UNL, Fac Sci & Technol, Dept Elect Engn, P-2829516 Caparica, Portugal
[2] High Inst Engn Lisbon ISEL, Dept Elect & Telecommun & Comp, P-1959007 Lisbon, Portugal
来源
CONFERENCE ON ELECTRONICS, TELECOMMUNICATIONS AND COMPUTERS - CETC 2013 | 2014年 / 17卷
关键词
Voice pathologies identification; formant frequency; formant bandwidth; pitch jitter; pitch;
D O I
10.1016/j.protcy.2014.10.229
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The identification of voice pathologies using speech processing techniques can be an useful contribution to the diagnose of larynx diseases. This work presents an identification system using spectral features and pitch jitter extracted from the sustained vowels /a/, /e/ and /i/. A SVM (Support Vector Machine) classifier has been implemented to discriminate Reinke's edema pathologies from nodules. The main objective of this work is to inspect if the spectral features reported in previous work for the vowel /a/ are present in others vowels, and evaluate the voice pathologies identification rate. (C) 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
引用
收藏
页码:202 / 208
页数:7
相关论文
共 50 条
  • [1] Feature Selection and Comparison of Classifiers for Reinke's Edema Identification
    Pignelli, Rogerio
    Scalassara, Paulo R.
    Dajer, Maria E.
    Spatti, Danilo H.
    2024 IEEE 22ND MEDITERRANEAN ELECTROTECHNICAL CONFERENCE, MELECON 2024, 2024, : 317 - 322
  • [2] Functional Results of Reinke's Edema Surgery Using a Microdebrider
    Honda, Keigo
    Haji, Tomoyuki
    Maruyama, Hagino
    ANNALS OF OTOLOGY RHINOLOGY AND LARYNGOLOGY, 2010, 119 (01): : 32 - 36
  • [3] Steroid injection for Reinke's edema using fiberoptic laryngeal surgery
    Tateya, I
    Omori, K
    Kojima, H
    Hirano, S
    Kaneko, K
    Ito, J
    ACTA OTO-LARYNGOLOGICA, 2003, 123 (03) : 417 - 420
  • [4] Auditory perception of lay judges about gender identification of women with Reinke's edema
    Pereira, Amanda Maria
    Dassie-Leite, Ana Paula
    Pereira, Eliane Cristina
    Cavichiolo, Juliana Benthien
    Rosa, Marcelo de Oliveira
    Fugmann, Elmar Allen
    CODAS, 2018, 30 (04):
  • [5] Identification of concurrent vowels using spectral matching with 'missing data'
    Makin, SJ
    Brown, GJ
    BRITISH JOURNAL OF AUDIOLOGY, 2000, 34 (02): : 108 - 109
  • [6] Replication-based regularization approaches to diagnose Reinke's edema by using voice recordings
    Naranjo, Lizbeth
    Perez, Carlos J.
    Campos-Roca, Yolanda
    Madruga, Mario
    ARTIFICIAL INTELLIGENCE IN MEDICINE, 2021, 120
  • [7] Spoken Language Identification Using Spectral Features
    Koolagudi, Shashidhar G.
    Rastogi, Deepika
    Rao, K. Sreenivasa
    CONTEMPORARY COMPUTING, 2012, 306 : 496 - +
  • [8] Chinese dialect identification using tone features based on pitch flux
    Ma, Bin
    Zhu, Donglai
    Tong, Rong
    2006 IEEE International Conference on Acoustics, Speech and Signal Processing, Vols 1-13, 2006, : 1029 - 1032
  • [9] Vocal-fold vibration of patients with Reinke's edema observed using high-speed digital imaging
    Watanabe, Takeshi
    Kaneko, Kenichi
    Sakaguchi, Koichi
    Takahashi, Haruo
    AURIS NASUS LARYNX, 2016, 43 (06) : 654 - 657
  • [10] A machine learning approach for gender identification using statistical features of pitch in speeches
    Shagi, G. U.
    Aji, S.
    APPLIED ACOUSTICS, 2022, 185