Critical random forests

被引:6
|
作者
Martin, James B. [1 ]
Yeo, Dominic [2 ]
机构
[1] Univ Oxford, Dept Stat, 24-29 St Giles, Oxford OX1 3LB, England
[2] Technion Israel Inst Technol, Fac Ind Engn & Management, Haifa, Israel
基金
英国工程与自然科学研究理事会;
关键词
Random forest; random graph; critical window; exploration process; CRITICAL RANDOM GRAPHS; COMPONENT SIZES; SCALING LIMITS; COALESCENT; EVOLUTION;
D O I
10.30757/ALEA.v15-35
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let F(N, m) denote a random forest on a set of N vertices, chosen uniformly from all forests with m edges. Let F(N,p) denote the forest obtained by conditioning the Erdos-Renyi graph G(N,p) to be acyclic. We describe scaling limits for the largest components of F(N,p) and F(N, m), in the critical window p = N-1 + O(N-4/3) or m = N/2 + O(N-2/3). Aldous (1997) described a scaling limit for the largest components of G(N, p) within the critical window in terms of the excursion lengths of a reflected Brownian motion with time-dependent drift. Our scaling limit for critical random forests is of a similar nature, but now based on a reflected diffusion whose drift depends on space as well as on time.
引用
收藏
页码:913 / 960
页数:48
相关论文
共 50 条
  • [1] Critical behaviour of spanning forests on random planar graphs
    Bondesan, Roberto
    Caracciolo, Sergio
    Sportiello, Andrea
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2017, 50 (07)
  • [2] Imprecise Extensions of Random Forests and Random Survival Forests
    Utkin, Lev, V
    Kovalev, Maxim S.
    Meldo, Anna A.
    Coolen, Frank P. A.
    [J]. PROCEEDINGS OF THE ELEVENTH INTERNATIONAL SYMPOSIUM ON IMPRECISE PROBABILITIES: THEORIES AND APPLICATIONS (ISIPTA 2019), 2019, 103 : 404 - 413
  • [3] Random forests
    Breiman, L
    [J]. MACHINE LEARNING, 2001, 45 (01) : 5 - 32
  • [4] Random Forests
    Leo Breiman
    [J]. Machine Learning, 2001, 45 : 5 - 32
  • [5] Random forests
    Pavlov, YL
    [J]. PROBABILISTIC METHODS IN DISCRETE MATHEMATICS, 1997, : 11 - 18
  • [6] Random Prism: An Alternative to Random Forests
    Stahl, Frederic
    Bramer, Max
    [J]. RESEARCH AND DEVELOPMENT IN INTELLIGENT SYSTEMS XXVIII: INCORPORATING APPLICATIONS AND INNOVATIONS IN INTELLIGENT SYSTEMS XIX, 2011, : 5 - 18
  • [7] Unsupervised random forests
    Mantero, Alejandro
    Ishwaran, Hemant
    [J]. STATISTICAL ANALYSIS AND DATA MINING, 2021, 14 (02) : 144 - 167
  • [8] CONSISTENCY OF RANDOM FORESTS
    Scornet, Erwan
    Biau, Gerard
    Vert, Jean-Philippe
    [J]. ANNALS OF STATISTICS, 2015, 43 (04): : 1716 - 1741
  • [9] Extremal Random Forests
    Gnecco, Nicola
    Terefe, Edossa Merga
    Engelke, Sebastian
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2024,
  • [10] Joints in Random Forests
    Correia, Alvaro H. C.
    Peharz, Robert
    de Campos, Cassio
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 33, NEURIPS 2020, 2020, 33