Reference map technique for finite-strain elasticity and fluid-solid interaction

被引:61
|
作者
Kamrin, Ken [1 ]
Rycroft, Chris H. [2 ,3 ]
Nave, Jean-Christophe [4 ]
机构
[1] MIT, Dept Mech Engn, Cambridge, MA 02139 USA
[2] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
[3] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Dept Math, Berkeley, CA 94720 USA
[4] McGill Univ, Dept Math & Stat, Montreal, PQ H3A 2K6, Canada
基金
美国国家科学基金会; 加拿大自然科学与工程研究理事会;
关键词
Finite-differences; Numerical algorithms; Finite strain; Rubber material; EULERIAN FORMULATION; GODUNOV METHOD; DEFORMATION; FLOW; DYNAMICS; SCHEMES;
D O I
10.1016/j.jmps.2012.06.003
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The reference map, defined as the inverse motion function, is utilized in an Eulerian-frame representation of continuum solid mechanics, leading to a simple, explicit finite-difference method for solids undergoing finite deformations. We investigate the accuracy and applicability of the technique for a range of finite-strain elasticity laws under various geometries and loadings. Capacity to model dynamic, static, and quasi-static conditions is shown. Specifications of the approach are demonstrated for handling irregularly shaped and/or moving boundaries, as well as shock solutions. The technique is also integrated within a fluid-solid framework using a level-set to discern phases and using a standard explicit fluid solver for the fluid phases. We employ a sharp-interface method to institute the interfacial conditions, and the resulting scheme is shown to efficiently capture fluid-solid interaction solutions in several examples. Published by Elsevier Ltd.
引用
收藏
页码:1952 / 1969
页数:18
相关论文
共 50 条
  • [1] Stable numerics for finite-strain elasticity
    Shakeri, Rezgar
    Ghaffari, Leila
    Thompson, Jeremy L.
    Brown, Jed
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2024, 125 (21)
  • [2] On the energy release rate in finite-strain elasticity
    Knees, Dorothee
    Mielke, Alexander
    MECHANICS OF ADVANCED MATERIALS AND STRUCTURES, 2008, 15 (6-7) : 421 - 427
  • [3] OpenFOAM FINITE VOLUME SOLVER FOR FLUID-SOLID INTERACTION
    Tukovic, Zeljko
    Karac, Aleksandar
    Cardiff, Philip
    Jasak, Hrvoje
    Ivankovic, Alojz
    TRANSACTIONS OF FAMENA, 2018, 42 (03) : 1 - 31
  • [4] Energy release rate for cracks in finite-strain elasticity
    Knees, Dorothee
    Mielke, Alexander
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2008, 31 (05) : 501 - 528
  • [6] ON THE FLUID-SOLID INTERACTION IN REFERENCE TO THERMOELASTOHYDRODYNAMIC ANALYSIS OF JOURNAL BEARINGS
    KHONSARI, MM
    WANG, SH
    JOURNAL OF TRIBOLOGY-TRANSACTIONS OF THE ASME, 1991, 113 (02): : 398 - 404
  • [7] Finite-strain models of actuation: prestretch and elasticity parameters
    Kofod, G.
    ARTIFICIAL MUSCLE ACTUATORS USING ELECTROACTIVE POLYMERS, 2009, 61 : 91 - 100
  • [8] DEVELOPMENT OF THE FLUID-SOLID TECHNIQUE
    KAULAKIS, AF
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1955, 102 (09) : C227 - C227
  • [9] Simulating fluid-solid interaction
    Génevaux, O
    Habibi, A
    Dischler, JM
    GRAPHICS INTERFACE 2003, PROCEEDING, 2003, : 31 - 38
  • [10] KINEMATICS AND STATICS OF FINITE-STRAIN FORCE AND MOMENT STRESS ELASTICITY
    REISSNER, E
    STUDIES IN APPLIED MATHEMATICS, 1973, 52 (02) : 97 - 101