High-speed high-pressure ratio compressor surge is a transient breakdown in compression accompanied by an abrupt momentary reversal of gas flow. It commonly exists in dynamic type turbo compressors, particularly in the axial compressor of modern aero-engines. By Newton's Laws of Motion, a force is needed to change the state of any motion. So what is the force that can cause such a dramatic motion as surge? What exactly triggers it, and how do we quantify the transient surge phenomenon? This paper attempts to answer these questions and discuss the transient dynamics of surge at its initial stage. It has generally been accepted that surge is precipitated by the onset of a rotating spike or stall, not only for low speed but for high-speed compressors too. The state of dynamic surge modeling today is best exemplified by the "Greitzer-Moore" model. However, it fails to incorporate the key elements of the transient nature of a surge inception: the extremely short time duration on millisecond scale and the shock wave presence observed experimentally. An indirect approach is taken in this paper to address the transient dynamics of stall and surge by using an analogy to the shock tube. The link is established based on observations that instant zero net through flow inside stalled cascade cell triggers stall/surge. The results from the analogy reveal that surge initiation simultaneously generates a pair of non-linear compression and expansion waves (CW & EW) and induced reverse fluid flow (IRFF). The dynamic forces for instant flow reversal are the pushing force of upstream propagating CW and the pulling force from downstream travelling EW. Surge Rules are deduced and then compared with experimental findings by previous researchers with good agreements. Moreover, the strength of the transient post-surge components, CW, EW and LRFF, can be estimated analytically or numerically by the shock tube theory from known pre-surge conditions and routes to surge.