Data-Driven Subspace Predictive Control of a Nuclear Reactor

被引:34
|
作者
Vajpayee, Vineet [1 ]
Mukhopadhyay, Siddhartha [1 ,2 ]
Tiwari, Akhilanand Pati [1 ,3 ]
机构
[1] Homi Bhabha Natl Inst, Bombay 400094, Maharashtra, India
[2] Bhabha Atom Res Ctr, Seismol Div, Bombay 400085, Maharashtra, India
[3] Bhabha Atom Res Ctr, Reactor Control Syst Design Sect, Bombay 400085, Maharashtra, India
关键词
Load-following operation; nuclear reactor; predictive control; pressurized water-type reactor (PWR); subspace identification; wavelet filtering; LOAD-FOLLOWING OPERATION; POWER-PLANT; WAVELET SHRINKAGE; ADAPTIVE-CONTROL; NEURAL-NETWORKS; DESIGN; CORE;
D O I
10.1109/TNS.2017.2785362
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper introduces a methodology of designing subspace predictive reactor core power control during load-following mode of operation. The central idea is to implement predictive control law directly from the preprocessed input-output data set without using any explicit process model. The controller is designed to include design constraints, feedforward control, and integral control action effectively. Furthermore, time variations in the process are taken into account by recursively updating control parameters with the arrival of new data set. The efficacy of the proposed technique is demonstrated for tracking various load rejection as well as load-following transients for a pressurized water nuclear reactor. A detailed parameter sensitivity analysis is carried out to analyze the controller performance.
引用
下载
收藏
页码:666 / 679
页数:14
相关论文
共 50 条
  • [1] Data-driven subspace approach to predictive control
    Huang, Biao
    Kadali, Ramesh
    Lecture Notes in Control and Information Sciences, 2008, 374 : 121 - 141
  • [2] Data-driven subspace predictive control: Stability and horizon tuning
    Sedghizadeh, Saba
    Beheshti, Soosan
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2018, 355 (15): : 7509 - 7547
  • [3] A Data-Driven Subspace Design for Dual-Rate Predictive Control
    Liu, X. -M.
    Li, S. -T.
    Zhang, K. -J.
    2014 11TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA), 2014, : 3787 - 3791
  • [4] Generalized Data-Driven Predictive Control: Merging Subspace and Hankel Predictors
    Lazar, M.
    Verheijen, P. C. N.
    MATHEMATICS, 2023, 11 (09)
  • [5] Data-driven Subspace Identification and Predictive Control for a NIAT Process Platform
    Wang, Lu
    Li, Ning
    Li, Shaoyuan
    PROCEEDINGS OF THE 2012 24TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 2012, : 1648 - 1653
  • [6] Data-Driven Predictive Control With Switched Subspace Matrices for an SCR System
    Zhao, Jinghua
    Liu, Jie
    Sun, Hongyu
    Hu, Yunfeng
    Sun, Yao
    Xie, Fangxi
    IEEE ACCESS, 2022, 10 : 107616 - 107629
  • [7] Data-Driven Predictive Control of Exoskeleton for Hand Rehabilitation with Subspace Identification
    Kaplanoglu, Erkan
    Akgun, Gazi
    SENSORS, 2022, 22 (19)
  • [8] Nonlinear Data-Driven Predictive Control using Deep Subspace Prediction Networks
    Lazar, Mircea
    Popescu, Mihai-Serban
    Schoukens, Maarten
    2023 62ND IEEE CONFERENCE ON DECISION AND CONTROL, CDC, 2023, : 3770 - 3775
  • [9] Data-driven subspace predictive control: lab demonstration and future outlook.
    Haffert, Sebastiaan Y.
    Males, Jared R.
    Close, Laird M.
    Van Gorkom, Kyle
    Long, Joseph D.
    Hedglen, Alexander D.
    Guyon, Olivier
    Schatz, Lauren
    Kautz, Maggie
    Lumbres, Jennifer
    Rodack, Alexander
    Knight, Justin M.
    Sun, He
    Fogarty, Kevin
    TECHNIQUES AND INSTRUMENTATION FOR DETECTION OF EXOPLANETS X, 2021, 11823
  • [10] Data-driven subspace predictive control: lab demonstration and future outlook.
    Haffert, Sebastiaan Y.
    Males, Jared R.
    Close, Laird M.
    Van Gorkom, Kyle
    Long, Joseph D.
    Hedglen, Alexander D.
    Guyon, Olivier
    Schatz, Lauren
    Kautz, Aggie
    Lumbres, Jennifer
    Rodack, Alexander
    Knight, Justin M.
    Sun, He
    Fogarty, Kevin
    TECHNIQUES AND INSTRUMENTATION FOR DETECTION OF EXOPLANETS X, 2021, 11823