Nanopore Technology for Biomedical Applications

被引:143
|
作者
Desai, Tejal A. [1 ]
Hansford, Derek J. [2 ]
Kulinsky, Lawrence [3 ]
Nashat, Amir H. [4 ]
Rasi, Guido [5 ]
Tu, Jay [6 ]
Wang, Yuchun [7 ]
Zhang, Miqin [8 ]
Ferrari, Mauro [9 ]
机构
[1] Univ Illinois, Dept Bioengn, Chicago, IL 60607 USA
[2] Ohio State Univ, Ctr Biomed Engn, Dept Mat Sci & Engn, Columbus, OH 43210 USA
[3] Univ Calif Berkeley, Dept Mat Sci & Mineral Engn, Berkeley, CA 94720 USA
[4] MIT, Dept Chem Engn, Cambridge, MA 02139 USA
[5] CNR, Ist Med Sperimentale, I-00137 Rome, Italy
[6] Alien Technol, Hayward, CA 94545 USA
[7] Appl Mat Inc, Chem Mech Polishing Div, Santa Clara, CA 95054 USA
[8] Univ Washington, Dept Mat Sci & Engn, Seattle, WA 98195 USA
[9] Ohio State Univ, Ctr Biomed Engn, Columbus, OH 43210 USA
基金
美国国家科学基金会;
关键词
BioMEMS; nanotechnology; microfabrication; membranes; silicon;
D O I
10.1023/A:1009903215959
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The ability to create well-defined and controlled interfaces has been an area of great interest over the last few years, particularly in the biomedical arena. This paper will describe the development of technology for the fabrication of nanopore membranes, and their operation in biological environments. With monodisperse pores sizes as small as 10 nanometers, these membranes offer advantages in their reproducibility, and their ability to be integrated with controlled biochemical surface modification protocols. A comprehensive review of results in the areas of nanopore and biocapsule microfabrication technologies, biocompatibility of nanomembrane materials, biologically appropriate post-processing protocols (bonding, sterilization), surface modification protocols, and appropriate mass transport models will be presented. The results point to the potential of using such technologies for therapeutic applications including immunoisolation biocapsules, drug delivery devices, and targeted biorecognition platforms.
引用
收藏
页码:11 / 40
页数:30
相关论文
共 50 条
  • [1] Nanopore Technology for Biomedical Applications
    Tejal A. Desai
    Derek J. Hansford
    Lawrence Kulinsky
    Amir H. Nashat
    Guido Rasi
    Jay Tu
    Yuchun Wang
    Miqin Zhang
    Mauro Ferrari
    Biomedical Microdevices, 1999, 2 : 11 - 40
  • [2] Nanopore technology and its applications
    Jia, SZ
    Sun, HY
    Wang, QL
    PROGRESS IN BIOCHEMISTRY AND BIOPHYSICS, 2002, 29 (02) : 202 - 205
  • [3] Nanopore sequencing technology, bioinformatics and applications
    Yunhao Wang
    Yue Zhao
    Audrey Bollas
    Yuru Wang
    Kin Fai Au
    Nature Biotechnology, 2021, 39 : 1348 - 1365
  • [4] Nanopore sequencing technology and its applications
    Zheng, Peijie
    Zhou, Chuntao
    Ding, Yuemin
    Liu, Bin
    Lu, Liuyi
    Zhu, Feng
    Duan, Shiwei
    MEDCOMM, 2023, 4 (04):
  • [5] Nanopore sequencing technology, bioinformatics and applications
    Wang, Yunhao
    Zhao, Yue
    Bollas, Audrey
    Wang, Yuru
    Au, Kin Fai
    NATURE BIOTECHNOLOGY, 2021, 39 (11) : 1348 - 1365
  • [6] Grid technology for biomedical applications
    Breton, V
    Blanchet, C
    Legré, Y
    Maigne, L
    Montagnat, J
    HIGH PERFORMANCE COMPUTING FOR COMPUTATIONAL SCIENCE - VECPAR 2004, 2005, 3402 : 204 - 218
  • [7] Biomedical Applications of Terahertz Technology
    Shur, Michael
    ADVANCES IN TERAHERTZ BIOMEDICAL IMAGING AND SPECTROSCOPY, 2022, 11975
  • [8] Nanobiosensors: applications in biomedical technology
    Banigo, A. T.
    Azeez, T. O.
    Ejeta, K. O.
    Lateef, A.
    Ajuogu, E.
    NANOTECHNOLOGY APPLICATIONS IN AFRICA: OPPORTUNITIES AND CONSTRAINTS, 2020, 805
  • [9] Biomedical applications of terahertz technology
    Wallace, VP
    Cole, BC
    Woodward, RM
    Pye, RJ
    Arnone, DA
    2002 IEEE/LEOS ANNUAL MEETING CONFERENCE PROCEEDINGS, VOLS 1 AND 2, 2002, : 308 - 309
  • [10] Biomedical applications of terahertz technology
    Gong, Aiping
    Qiu, Yating
    Chen, Xiaowan
    Zhao, Zhenyu
    Xia, Linzhong
    Shao, Yongni
    APPLIED SPECTROSCOPY REVIEWS, 2020, 55 (05) : 418 - 438