Single Image Super Resolution from Compressive Samples using Two Level Sparsity based Reconstruction

被引:2
|
作者
Nath, Aneesh G. [1 ]
Nair, Madhu S. [2 ]
Rajan, Jeny [3 ]
机构
[1] TKM Coll Engn, Dept Comp Sci & Engn, Kollam 691005, Kerala, India
[2] Univ Kerala, Dept Comp Sci, Thiruvananthapuram 695581, Kerala, India
[3] Natl Inst Technol Karnataka, Dept Comp Sci & Engn, Mangalore 575025, Karnataka, India
关键词
Super-resolution; Compressed Sensing; Sparsity; Dictionary learning; BM3D;
D O I
10.1016/j.procs.2015.02.100
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Super Resolution based on Compressed Sensing (CS) considers low resolution (LR) image patch as the compressive samples of its high resolution (HR) patch. Compressed sensing based image acquisition systems acquire less number of random linear measurements without first collecting all the pixel values. But using these compressive measurements directly to reconstruct the image causes quality issues. In this paper an image super-resolution method with two level sparsity based reconstruction via patch based image interpolation and dictionary learning is proposed. The first level reconstruction generates a low resolution image from random samples and the interpolation scheme used in this algorithm reduces the HR-LR patch coherency due to neighborhood issue which is a major drawback of single image super resolution algorithms. The dictionary based reconstruction phase generates the high resolution image from the low resolution output of the first level reconstruction phase. The experimental results proved that the proposed two level reconstruction scheme recovers more details of the image and yields improved results from very few samples (around 35-45%) than the state-of-the-art algorithms which uses low resolution image itself as input. The results are compared by considering both PSNR values and visual perception. (C) 2015 The Authors. Published by Elsevier B.V.
引用
收藏
页码:1643 / 1652
页数:10
相关论文
共 50 条
  • [31] A Review of Single Image Super-Resolution Reconstruction Based on Deep Learning
    Wu J.
    Ye X.-J.
    Huang F.
    Chen L.-Q.
    Wang Z.-F.
    Liu W.-X.
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2022, 50 (09): : 2265 - 2294
  • [32] Survey of Learning Based Single Image Super-Resolution Reconstruction Technology
    K. Bai
    X. Liao
    Q. Zhang
    X. Jia
    S. Liu
    Pattern Recognition and Image Analysis, 2020, 30 : 567 - 577
  • [33] Single Image Super-Resolution Reconstruction Based on VGG Energy Loss
    Ding L.
    Ding S.-F.
    Zhang J.
    Zhang Z.-C.
    Ruan Jian Xue Bao/Journal of Software, 2021, 32 (11): : 3659 - 3668
  • [34] A review of single image super-resolution reconstruction based on deep learning
    Yu, Ming
    Shi, Jiecong
    Xue, Cuihong
    Hao, Xiaoke
    Yan, Gang
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (18) : 55921 - 55962
  • [35] Single Image Super-resolution Reconstruction Algorithm Based on Eage Selection
    Zhang, Yaolan
    Liu, Yijun
    MATERIALS SCIENCE, ENERGY TECHNOLOGY, AND POWER ENGINEERING I, 2017, 1839
  • [36] Survey of Learning Based Single Image Super-Resolution Reconstruction Technology
    Bai, K.
    Liao, X.
    Zhang, Q.
    Jia, X.
    Liu, S.
    PATTERN RECOGNITION AND IMAGE ANALYSIS, 2020, 30 (04) : 567 - 577
  • [37] A review of single image super-resolution reconstruction based on deep learning
    Ming Yu
    Jiecong Shi
    Cuihong Xue
    Xiaoke Hao
    Gang Yan
    Multimedia Tools and Applications, 2024, 83 : 55921 - 55962
  • [38] Fast single image super resolution reconstruction via image separation
    Zhou, Yichao
    Tang, Zhenmin
    Hu, Xiyuan
    Journal of Networks, 2014, 9 (07) : 1811 - 1818
  • [39] Improved Single Image Super-resolution Using Sparsity and Structured Dictionary Learning in Wavelet Domain
    Nazzal, Mahmoud
    Ozkaramanli, Huseyin
    2013 21ST SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2013,
  • [40] EXPLOITING MULTI-SCALE SPATIAL STRUCTURES FOR SPARSITY BASED SINGLE IMAGE SUPER-RESOLUTION
    Zhang, Yongqin
    Liu, Jiaying
    Bai, Wei
    Guo, Zongming
    2014 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2014, : 3877 - 3881