Numerical solution of 2-D scattering problems using high-order methods

被引:26
|
作者
Hamilton, LR [1 ]
Ottusch, JJ
Stalzer, MA
Turley, RS
Visher, JL
Wandzura, SM
机构
[1] HRL Labs, Informat Sci Labs, Computat Phys Dept, Malibu, CA 90265 USA
[2] Brigham Young Univ, Dept Phys & Astron, Provo, UT 84602 USA
关键词
boundary integral equation; electromagnetic scattering; high-order numerical method; method of moments;
D O I
10.1109/8.768808
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We demonstrate that a method of moments scattering code employing high-order methods can compute accurate values for the scattering cross section of a smooth body more efficiently than a scattering code employing standard low-order methods. Use of a high-order code also makes it practical to provide meaningful accuracy estimates for computed solutions.
引用
收藏
页码:683 / 691
页数:9
相关论文
共 50 条
  • [1] Comments on "Numerical solution of 2-D scattering problems using high-order methods"
    Putnam, JM
    [J]. IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2001, 49 (01) : 110 - 111
  • [2] Comments on "Numerical solution of 2-D scattering problems using high-order methods" - Authors' reply
    Hamilton, LR
    Ottusch, JJ
    Stalzer, MA
    Turley, RS
    Visher, JL
    Wandzura, SM
    [J]. IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2001, 49 (01) : 111 - 111
  • [3] Numerical solution of 2-D scattering problems using high-order methods (vol 47, pg 683, 1999)
    Hamilton, LR
    Ottusch, JJ
    Stalzer, MA
    Turley, RS
    Visher, JL
    Wandzura, SM
    [J]. IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 1999, 47 (06) : 1123 - 1123
  • [4] Accurate numerical solutions of 2-D elastodynamics problems using compact high-order stencils
    Idesman, A.
    Dey, B.
    [J]. COMPUTERS & STRUCTURES, 2020, 229
  • [5] Fast, high-order solution of surface scattering problems
    Bruno, OP
    Kunyansky, LA
    [J]. FIFTH INTERNATIONAL CONFERENCE ON MATHEMATICAL AND NUMERICAL ASPECTS OF WAVE PROPAGATION, 2000, : 465 - 470
  • [6] Fast, high-order solution of surface scattering problems
    Bruno, OP
    Kunyansky, LA
    [J]. IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM, VOLS 1-4: TRANSMITTING WAVES OF PROGRESS TO THE NEXT MILLENNIUM, 2000, : 1860 - 1863
  • [7] High-Order Numerical Methods for 2D Parabolic Problems in Single and Composite Domains
    Ludvigsson, Gustav
    Steffen, Kyle R.
    Sticko, Simon
    Wang, Siyang
    Xia, Qing
    Epshteyn, Yekaterina
    Kreiss, Gunilla
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2018, 76 (02) : 812 - 847
  • [8] High-Order Numerical Methods for 2D Parabolic Problems in Single and Composite Domains
    Gustav Ludvigsson
    Kyle R. Steffen
    Simon Sticko
    Siyang Wang
    Qing Xia
    Yekaterina Epshteyn
    Gunilla Kreiss
    [J]. Journal of Scientific Computing, 2018, 76 : 812 - 847
  • [9] HIGH-ORDER METHODS FOR THE NUMERICAL-SOLUTION OF 2-POINT BOUNDARY-VALUE-PROBLEMS
    CASH, JR
    SINGHAL, A
    [J]. BIT, 1982, 22 (02): : 184 - 199
  • [10] High-order quadratures for the solution of scattering problems in two dimensions
    Duan, Ran
    Rokhlin, Vladimir
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 228 (06) : 2152 - 2174