A Bayesian approach to modelling graphical vector autoregressions

被引:18
|
作者
Corander, J
Villani, M
机构
[1] Univ Helsinki, Dept Math & Stat, FIN-00014 Helsinki, Finland
[2] Univ Stockholm, S-10691 Stockholm, Sweden
关键词
fractional Bayes; Granger causality; graphical models; lag-length selection; vector autoregression;
D O I
10.1111/j.1467-9892.2005.00460.x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce a Bayesian approach to model assessment in the class of graphical vector autoregressive processes. As a result of the very large number of model structures that may be considered, simulation-based inference, such as Markov chain Monte Carlo, is not feasible. Therefore, we derive an approximate joint posterior distribution of the number of lags in the autoregression and the causality structure represented by graphs using a fractional Bayes approach. Some properties of the approximation are derived and our approach is illustrated on a four-dimensional macroeconomic system and five-dimensional air pollution data.
引用
收藏
页码:141 / 156
页数:16
相关论文
共 50 条
  • [1] Bayesian learning of graphical vector autoregressions with unequal lag-lengths
    Marttinen, Pekka
    Corander, Jukka
    [J]. MACHINE LEARNING, 2009, 75 (02) : 217 - 243
  • [2] Bayesian Vector Autoregressions
    Wozniak, Tomasz
    [J]. AUSTRALIAN ECONOMIC REVIEW, 2016, 49 (03) : 365 - 380
  • [3] Bayesian compressed vector autoregressions
    Koop, Gary
    Korobilis, Dimitris
    Pettenuzzo, Davide
    [J]. JOURNAL OF ECONOMETRICS, 2019, 210 (01) : 135 - 154
  • [4] FORECASTING WITH GENERALIZED BAYESIAN VECTOR AUTOREGRESSIONS
    KADIYALA, KR
    KARLSSON, S
    [J]. JOURNAL OF FORECASTING, 1993, 12 (3-4) : 365 - 378
  • [5] Bayesian prediction with cointegrated vector autoregressions
    Villani, M
    [J]. INTERNATIONAL JOURNAL OF FORECASTING, 2001, 17 (04) : 585 - 605
  • [6] Bayesian modelling of effective and functional brain connectivity using hierarchical vector autoregressions
    Wegmann, Bertil
    Lundquist, Anders
    Eklund, Anders
    Villani, Mattias
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2024,
  • [7] Nowcasting with large Bayesian vector autoregressions?
    Cimadomo, Jacopo
    Giannone, Domenico
    Lenza, Michele
    Monti, Francesca
    Sokol, Andrej
    [J]. JOURNAL OF ECONOMETRICS, 2022, 231 (02) : 500 - 519
  • [8] FORECASTING VECTOR AUTOREGRESSIONS WITH BAYESIAN PRIORS
    BESSLER, DA
    KLING, JL
    [J]. AMERICAN JOURNAL OF AGRICULTURAL ECONOMICS, 1986, 68 (01) : 144 - 151
  • [9] Bayesian vector autoregressions with stochastic volatility
    Uhlig, H
    [J]. ECONOMETRICA, 1997, 65 (01) : 59 - 73
  • [10] Sparse Bayesian vector autoregressions in huge dimensions
    Kastner, Gregor
    Huber, Florian
    [J]. JOURNAL OF FORECASTING, 2020, 39 (07) : 1142 - 1165