Transient Flow Theory of Multiple-Fractured Horizontal Wells with Complex Mechanisms in Shale Gas Reservoirs

被引:1
|
作者
Du, Dianfa [1 ,2 ]
Zhang, Genkai [1 ,2 ]
Zhao, Yanwu [1 ,2 ]
Sun, Xiaofei [1 ,2 ]
Zhang, Bin [1 ,2 ]
机构
[1] China Univ Petr East China, Minist Educ, Key Lab Unconvent Oil Dr Gas Dev, Qingdao 266580, Peoples R China
[2] China Univ Petr East China, Sch Petr Engn, Qingdao 266580, Peoples R China
关键词
COMPRESSIBILITY; PERMEABILITY; TRANSPORT;
D O I
10.1155/2020/7364734
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Shale reservoirs have the characterizations of low porosity, low permeability, and hydrocarbon organic matter self-generation and self-storage, resulting in its complex flow mechanisms. Compared with fractured vertical wells, multiple-fractured horizontal wells are widely used due to their advantages of effectively increasing the well control range and further expanding the drainage area. To further study the multiscale flow mechanisms of shale gas, a flow model was established that considered viscous flow in microfractures and inorganic pores, the diffusion of Knudsen in nanoscale porosity, the coexistence of slippage, adsorption-desorption effects under infinity, and closed outer boundary conditions; based on the continuous point source solution, a multiple-fractured horizontal well flow model was established and solved by MATLAB programming. Then, the effects of various factors were investigated. The results show that the Knudsen diffusion and slippage coefficients mainly affect the apparent permeability of the matrix pores. The more the Knudsen diffusion and slippage coefficients are, the earlier the turbulent flow occurs and the higher the gas production is.
引用
下载
收藏
页数:17
相关论文
共 50 条
  • [1] Production rate analysis of multiple-fractured horizontal wells in shale gas reservoirs by a trilinear flow model
    Hu, Shu-yong
    Zhu, Qin
    Guo, Jing-jing
    Tang, Bin
    ENVIRONMENTAL EARTH SCIENCES, 2017, 76 (11)
  • [2] Production rate analysis of multiple-fractured horizontal wells in shale gas reservoirs by a trilinear flow model
    Shu-yong Hu
    Qin Zhu
    Jing-jing Guo
    Bin Tang
    Environmental Earth Sciences, 2017, 76
  • [3] A quadruple-porosity model for transient production analysis of multiple-fractured horizontal wells in shale gas reservoirs
    Guo, Jingjing
    Zhang, Liehui
    Zhu, Qin
    ENVIRONMENTAL EARTH SCIENCES, 2015, 73 (10) : 5917 - 5931
  • [4] A quadruple-porosity model for transient production analysis of multiple-fractured horizontal wells in shale gas reservoirs
    Jingjing Guo
    Liehui Zhang
    Qin Zhu
    Environmental Earth Sciences, 2015, 73 : 5917 - 5931
  • [5] Performance of multiple fractured horizontal wells in shale gas reservoirs with consideration of multiple mechanisms
    Wang, Hai-Tao
    JOURNAL OF HYDROLOGY, 2014, 510 : 299 - 312
  • [6] Transient flow model of stage-fractured horizontal wells in shale gas reservoirs
    Fan, Dongyan, 1600, University of Petroleum, China (38):
  • [7] Pressure Transient Analysis and Transient Inflow Performance Relationship of Multiple-Fractured Horizontal Wells in Naturally Fractured Reservoirs by a Trilinear Flow Model
    Xiang, Huizhu
    Han, Guoqing
    Ma, Gaoqiang
    Zhu, Zhiyong
    Zhu, Liying
    Peng, Long
    ACS OMEGA, 2021, 6 (29): : 19222 - 19232
  • [8] A Mathematical Pressure Transient Analysis Model for Multiple Fractured Horizontal Wells in Shale Gas Reservoirs
    Zeng, Yan
    Wang, Qing
    Ning, Zhengfu
    Sun, Hongliang
    GEOFLUIDS, 2018,
  • [9] Performance evaluation of multiple fractured horizontal wells in shale gas reservoirs
    Li, Chengyong
    Ye, Jianwen
    Yang, Jing
    Zhou, Jun
    ENERGY SCIENCE & ENGINEERING, 2020, 8 (10) : 3657 - 3671
  • [10] A semi-analytical model for multiple-fractured horizontal wells in heterogeneous gas reservoirs
    Tian, Feng
    Wang, Xiaodong
    Xu, Wenli
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2019, 183