Identification of Hammerstein Model using Bacteria Foraging Optimization Algorithm

被引:0
|
作者
Pal, P. S. [1 ]
Ghosh, A. [1 ]
Choudhury, S. [1 ]
Debapriya, D.
Kar, R. [1 ]
Mandal, D. [1 ]
Ghoshal, S. P. [2 ]
机构
[1] NIT Durgapur, Dept ECE, Durgapur, India
[2] Natl Inst Technol, Dept Elect Engn, Durgapur, India
关键词
BFO; Convergence; MSE; NARMAX Hammerstein model; Parametric identification; SYSTEMS; NONLINEARITIES;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents an efficient approach for identification of a nonlinear Hammerstein model using Bacteria Foraging Optimization (BFO) Algorithm. The accuracy and the efficiency of the proposed BFO based identification scheme have been justified with the optimal value of MSE and the corresponding comparative statistical information. The statistical information of the MSE has also been provided to justify consistency of the BFO algorithm for identification of the Hammerstein model. The estimated parameters along with their corresponding deviations and convergences are shown to justify efficiency of the proposed identification strategy. The deviations of the estimated parameters from their actual values are also reported to justify precision and effectiveness of the BFO based identification approach.
引用
收藏
页码:1609 / 1613
页数:5
相关论文
共 50 条
  • [1] Bilevel Optimization Using Bacteria Foraging Optimization Algorithm
    Mahapatra, Gautam
    Banerjee, Soumya
    Suganthan, Ponnuthurai Nagaratnam
    SWARM, EVOLUTIONARY, AND MEMETIC COMPUTING, SEMCCO 2014, 2015, 8947 : 351 - 362
  • [2] Hammerstein model identification based on bacterial foraging
    Lin, W.
    Liu, P. X.
    ELECTRONICS LETTERS, 2006, 42 (23) : 1332 - 1334
  • [3] Identification of continuous-time Hammerstein model using improved Archimedes optimization algorithm
    Islam, Muhammad Shafiqul
    Ahmad, Mohd Ashraf
    Wen, Cho Bo
    International Journal of Cognitive Computing in Engineering, 2024, 5 : 475 - 493
  • [4] Nonlinear Hammerstein model identification using Genetic Algorithm
    Akramizadeh, A
    Farjami, AA
    Khaloozadeh, H
    2002 IEEE INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE SYSTEMS, PROCEEDINGS, 2002, : 351 - 356
  • [5] Simplifying the Bacteria Foraging Optimization Algorithm
    Munoz, Mario A.
    Halgamuge, Saman K.
    Alfonso, Wilfredo
    Caicedo, Eduardo F.
    2010 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2010,
  • [6] Social Emotional Optimization Algorithm Based Identification of Nonlinear Hammerstein Model
    Pal, P. S.
    Choudhury, S.
    Ghosh, A.
    Kumar, S.
    Kar, R.
    Mandal, D.
    Ghoshal, S. P.
    2016 INTERNATIONAL CONFERENCE ON COMMUNICATION AND SIGNAL PROCESSING (ICCSP), VOL. 1, 2016, : 1633 - 1637
  • [7] Hammerstein Model based System Identification using Craziness Based Particle Swarm Optimization Algorithm
    Pal, P. S.
    Ghosh, A.
    Choudhury, S.
    Kumar, A.
    Kar, R.
    Mandal, D.
    Ghoshal, S. P.
    2016 INTERNATIONAL CONFERENCE ON COMMUNICATION AND SIGNAL PROCESSING (ICCSP), VOL. 1, 2016, : 1623 - 1627
  • [8] Process Identification Using Hammerstein Model with Gradient Descent Algorithm
    Chakraborty, Anirban
    Patra, Sankar Narayan
    2014 INTERNATIONAL CONFERENCE ON CONTROL, INSTRUMENTATION, ENERGY & COMMUNICATION (CIEC), 2014, : 738 - 742
  • [9] Nonlinear system identification using butterfly optimisation algorithm and Hammerstein model
    Singh, Sandeep
    Rawat, Tarun Kumar
    Ashok, Alaknanda
    INTERNATIONAL JOURNAL OF MODELLING IDENTIFICATION AND CONTROL, 2023, 42 (02) : 171 - 179
  • [10] Nonlinear Hammerstein Model Identification of SOFC using Improved GEO Algorithm
    Huo, Haibo
    Wu, Yanxiang
    Wang, Weihong
    Kuang, Xinghong
    Gan, Shihong
    Liu, Yuqing
    2010 8TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA), 2010, : 5767 - 5773