Soot formation in laminar diffusion flames

被引:260
|
作者
Smooke, MD
Long, MB
Connelly, BC
Colket, MB
Hall, RJ
机构
[1] Yale Univ, Dept Mech Engn, New Haven, CT 06520 USA
[2] United Technol Res Ctr, E Hartford, CT 06108 USA
基金
美国国家航空航天局; 美国国家科学基金会;
关键词
diffusion flame; modeling; laser diagnostics; soot formation; ethylene-air;
D O I
10.1016/j.combustflame.2005.08.028
中图分类号
O414.1 [热力学];
学科分类号
摘要
Laminar, sooting, coflow diffusion flames at atmospheric pressure have been Studied experimentally and theoretically as a function of fuel dilution by inert nitrogen. The flames have been investigated with laser diagnostics. Laser extinction has been used to calibrate the experimental soot volume fractions and an improved gating method has been implemented in the laser-induced incandescence (LII) measurements resulting in differences to the soot distributions reported previously. Numerical simulations have been based on a fully coupled solution of the flow conservation equations, gas-phase species conservation equations with complex chemistry, and the dynamical equations for soot spheroid growth. The model also includes the effects of radiation reabsorption through an iterative procedure. An investigation of the computed rates of particle inception, surface growth, and oxidation, along with a residence time analysis, helps to explain the shift in the peak soot volume fraction from the centerline to the wings of the flame as the fuel fraction increases. The shift arises from changes in the relative importance of inception and Surface growth combined with a significant increase in the residence time within the annular soot formation field leading to higher soot volume fractions, as the fuel fraction increases. (c) 2005 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
引用
收藏
页码:613 / 628
页数:16
相关论文
共 50 条
  • [1] SOOT FORMATION IN LAMINAR DIFFUSION FLAMES
    PETEREIT, N
    TAPPE, M
    WAGNER, HG
    HONNERY, DR
    KENT, JH
    BULLETIN DES SOCIETES CHIMIQUES BELGES, 1992, 101 (10): : 871 - 878
  • [2] SOOT PARTICLE FORMATION IN LAMINAR DIFFUSION FLAMES
    SANTORO, RJ
    MILLER, JH
    LANGMUIR, 1987, 3 (02) : 244 - 254
  • [3] SOOT FORMATION IN LAMINAR INVERSE DIFFUSION FLAMES
    MAKEL, DB
    KENNEDY, IM
    COMBUSTION SCIENCE AND TECHNOLOGY, 1994, 97 (4-6) : 303 - 314
  • [4] Soot formation in high pressure laminar diffusion flames
    Karatas, Ahmet E.
    Guelder, Oemer L.
    PROGRESS IN ENERGY AND COMBUSTION SCIENCE, 2012, 38 (06) : 818 - 845
  • [5] Modelling of laminar diffusion flames with biodiesel blends and soot formation
    Liu, Anxiong
    Gao, Zhan
    Rigopoulos, Stelios
    Luo, Kai H.
    Zhu, Lei
    FUEL, 2022, 317
  • [6] Soot formation in hydrocarbon air laminar jet diffusion flames
    Sunderland, PB
    Faeth, GM
    COMBUSTION AND FLAME, 1996, 105 (1-2) : 132 - 146
  • [7] SOOT FORMATION IN LAMINAR DIFFUSION FLAMES AT ELEVATED-TEMPERATURES
    GULDER, OL
    COMBUSTION AND FLAME, 1992, 88 (01) : 74 - 82
  • [8] Predictions of soot in laminar diffusion flames
    Kennedy, Ian M.
    Kollmann, Wolfgang
    Chen, J.-Y.
    AIAA journal, 1991, 29 (09): : 1452 - 1457
  • [9] PREDICTIONS OF SOOT IN LAMINAR DIFFUSION FLAMES
    KENNEDY, IM
    KOLLMANN, W
    CHEN, JY
    AIAA JOURNAL, 1991, 29 (09) : 1452 - 1457
  • [10] THE SUPPRESSION OF SOOT PARTICLE FORMATION IN LAMINAR AND TURBULENT-DIFFUSION FLAMES
    KENNEDY, IM
    COMBUSTION SCIENCE AND TECHNOLOGY, 1988, 59 (1-3) : 107 - 121