STOKES' THEOREM ON MANIFOLDS: A KURZWEIL-HENSTOCK APPROACH

被引:1
|
作者
Boonpogkrong, Varayu [1 ,2 ]
机构
[1] Prince Songkla Univ, Dept Math & Stat, Hat Yai 90110, Thailand
[2] CHE, Ctr Excellence Math, Bangkok 10400, Thailand
来源
TAIWANESE JOURNAL OF MATHEMATICS | 2013年 / 17卷 / 04期
关键词
The H-K integral; Partition of unity; Manifolds; Stokes' theorem;
D O I
10.11650/tjm.17.2013.2701
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, Stokes' theorem is proved by the Kurzweil-Henstock approach. Sufficient conditions for the existence of the exterior derivative of a k-form in R-n are given. Concepts of strong differentiability are used in sufficient conditions.
引用
收藏
页码:1183 / 1196
页数:14
相关论文
共 50 条
  • [1] KURZWEIL-HENSTOCK INTEGRATION ON MANIFOLDS
    Boonpogkrong, Varayu
    TAIWANESE JOURNAL OF MATHEMATICS, 2011, 15 (02): : 559 - 571
  • [2] A Fubini Theorem in Riesz spaces for the Kurzweil-Henstock Integral
    Boccuto, A.
    Candeloro, D.
    Sambucini, A. R.
    JOURNAL OF FUNCTION SPACES AND APPLICATIONS, 2011, 9 (03): : 283 - 304
  • [3] A Daniell integral approach to nonstandard Kurzweil-Henstock integral
    Ricardo Bianconi
    João C. Prandini
    Cláudio Possani
    Czechoslovak Mathematical Journal, 1999, 49 : 817 - 823
  • [4] A Daniell integral approach to nonstandard Kurzweil-Henstock integral
    Bianconi, R
    Prandini, JC
    Possani, C
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 1999, 49 (04) : 817 - 823
  • [5] ON THE DOUBLE LUSIN CONDITION AND CONVERGENCE THEOREM FOR KURZWEIL-HENSTOCK TYPE INTEGRALS
    Racca, Abraham
    Cabral, Emmanuel
    MATHEMATICA BOHEMICA, 2016, 141 (02): : 153 - 168
  • [6] A REMARK ON THE DEFINITION OF THE KURZWEIL-HENSTOCK INTEGRAL
    Vyborny, Rudolf
    REAL ANALYSIS EXCHANGE, 2005, 31 (02) : 465 - 467
  • [7] The Kurzweil-Henstock theory of stochastic integration
    Toh, Tin-Lam
    Chew, Tuan-Seng
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2012, 62 (03) : 829 - 848
  • [8] Variational measures and the Kurzweil-Henstock integral
    Schwabik, Stefan
    MATHEMATICA SLOVACA, 2009, 59 (06) : 731 - 752
  • [9] KURZWEIL-HENSTOCK AND KURZWEIL-HENSTOCK-PETTIS INTEGRABILITY OF STRONGLY MEASURABLE FUNCTIONS
    Bongiorno, B.
    Di Piazza, Palermo L.
    Musial, Palermo K.
    MATHEMATICA BOHEMICA, 2006, 131 (02): : 211 - 223
  • [10] The Kurzweil-Henstock theory of stochastic integration
    Tin-Lam Toh
    Tuan-Seng Chew
    Czechoslovak Mathematical Journal, 2012, 62 : 829 - 848