Thermodynamic and kinetic stabilities of CO2 oligomers

被引:9
|
作者
Dunlap, Brett I. [1 ]
Schweigert, Igor V. [1 ]
Purdy, Andrew P. [1 ]
Snow, Arthur W. [1 ]
Hu, Anguang [2 ]
机构
[1] USN, Div Chem, Res Lab, Washington, DC 20375 USA
[2] Def Res & Dev Canada Suffield, Medicine Hat, AB T1A 8K6, Canada
来源
JOURNAL OF CHEMICAL PHYSICS | 2013年 / 138卷 / 13期
关键词
PEROXYOXALATE CHEMILUMINESCENCE REACTION; CARBON-DIOXIDE; BASIS-SETS; MECHANISM; PRESSURE; SEARCH; FORMS;
D O I
10.1063/1.4797465
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Density-functional and coupled cluster calculations suggest that the stability, against unimolecular dissociation, of the cyclic D-3h trimer of CO2, 1,3,5-trioxetanetrione, is greater than all but one other chemically bound oligomer of CO2. It requires far less energy to produce, on a per CO2 basis, than the low-symmetry cyclic 1,2 dioxetanedione dimer, but its kinetic stability against unimolecular dissociation is much lower. The extreme stability of the dimer, which makes it an excellent intermediate in chemiluminescence, is caused by an extreme range of geometric change to its transition state leading to a trapezoidal potential energy surface. The thermodynamically more stable trimer affords a low pressure pathway from molecular carbon dioxide to the extended covalent structure at high pressure. (C) 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4797465]
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Thermodynamic and kinetic properties of CO2 hydrates and their applications in CO2 capture and separation
    Lee, Youngki
    Kim, Hyeonjin
    Lee, Wonhyeong
    Kang, Dong Woo
    Lee, Jae W.
    Ahn, Yun-Ho
    [J]. JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2023, 11 (05):
  • [2] Thermodynamic and Kinetic Response of Microbial Reactions to High CO2
    Jin, Qusheng
    Kirk, Matthew F.
    [J]. FRONTIERS IN MICROBIOLOGY, 2016, 7
  • [3] Thermodynamic and Kinetic Based Simulation Approach to CO2 and CO Methane Hydrogenation
    Sharifian, Seyedmehdi
    Miltner, Martin
    Harasek, Michael
    [J]. PRES2016: 19TH INTERNATIONAL CONFERENCE ON PROCESS INTEGRATION, MODELING AND OPTIMIZATION FOR ENERGY SAVINGS AND POLLUTION REDUCTION, 2016, 52 : 565 - 570
  • [4] Thermodynamic, structural, and kinetic studies of cyclopentane + CO2 hydrates: Applications for desalination and CO2 capture
    Lee, Joonseop
    Kim, Ki-Sub
    Seo, Yongwon
    [J]. CHEMICAL ENGINEERING JOURNAL, 2019, 375
  • [5] THERMODYNAMIC AND KINETIC EVALUATIONS OF RADICAL STABILITIES
    BAUSCH, MJ
    AUTRY, D
    GARCIA, C
    GONG, Y
    GOSTOWSKI, R
    LI, WX
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1994, 208 : 16 - FUEL
  • [6] Organic salts as kinetic and thermodynamic inhibitors for CO2 hydrate precipitation
    Ramos, Alessandro da Silva
    Pires, Jessica Pereira
    Medina Ketzer, Joao Marcelo
    Lourega, Rogerio Vescia
    [J]. JOURNAL OF NATURAL GAS SCIENCE AND ENGINEERING, 2020, 82
  • [7] Thermodynamic and kinetic studies on CO2 capture with Poly[VBTMA][Arg]
    Shahrom, Maisara Shahrom Raja
    Wilfred, Cecilia Devi
    Chong, Fai Kait
    [J]. JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2018, 116 : 22 - 29
  • [8] Oligomers partitioning in supercritical CO2
    Bonavoglia, B
    Storti, G
    Morbidelli, M
    [J]. MACROMOLECULES, 2005, 38 (13) : 5593 - 5601
  • [9] KINETIC AND THERMODYNAMIC STUDY OF EQUILIBRIUM CO2(CO)8 + H2-]2 HCO(CO)4
    UNGVARY, F
    MARKO, L
    [J]. KEMIAI KOZLEMENYEK, 1972, 37 (01): : 17 - &
  • [10] Engineering proteins with tunable thermodynamic and kinetic stabilities
    Pey, Angel L.
    Rodriguez-Larrea, David
    Bomke, Susanne
    Dammers, Susanne
    Godoy-Ruiz, Raquel
    Garcia-Mira, Maria M.
    Sanchez-Ruiz, Jose M.
    [J]. PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2008, 71 (01) : 165 - 174