Online Adaptive Hierarchical Space Partitioning Classifier

被引:0
|
作者
Kilic, O. Fatih [1 ]
Vanli, N. Denizcan [2 ]
Ozkan, Huseyin [1 ]
Delibalta, Ibrahim [3 ]
Kozat, Suleyman S. [1 ]
机构
[1] Ihsan Dogramaci Bilkent Univ, Elekt &Elekt Muhendisligi Bolumu, Ankara, Turkey
[2] Massachusetts Tekn Univ, Elekt & Elekt Muhendisligi Bolumu, Cambirdge, MA USA
[3] Turk Telekom Labs, Istanbul, Turkey
关键词
on-line learning; classification; adaptive trees; computational efficiency;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We introduce an on-line classification algorithm based on the hierarchical partitioning of the feature space which provides a powerful performance under the defined empirical loss. The algorithm adaptively partitions the feature space and at each region trains a different classifier. As a final classification result algorithm adaptively combines the outputs of these basic models which enables it to create a linear piecewise classifier model that can work well under highly non-linear complex data. The introduced algorithm also have scalable computational complexity that scales linearly with dimension of the feature space, depth of the partitioning and number of processed data. Through experiments we show that the introduced algorithm outperforms the state-of-the-art ensemble techniques over various well-known machine learning data sets.
引用
收藏
页码:1237 / 1240
页数:4
相关论文
共 50 条
  • [1] Adaptive Hierarchical Space Partitioning for Online Classification
    Kilic, O. Fatih
    Vanli, N. Denizcan
    Ozkan, Huseyin
    Delibalta, Ibrahim
    Kozat, Suleyman S.
    [J]. 2016 24TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2016, : 2290 - 2294
  • [2] COMBINED CLASSIFIER BASED ON FEATURE SPACE PARTITIONING
    Wozniak, Michal
    Krawczyk, Bartosz
    [J]. INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND COMPUTER SCIENCE, 2012, 22 (04) : 855 - 866
  • [3] Partitioning the feature space of a classifier with linear hyperplanes
    Padmanabhan, M
    Bahl, LR
    Nahamoo, D
    [J]. IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, 1999, 7 (03): : 282 - 288
  • [4] IMPROVED ADAPTIVE SPLITTING AND SELECTION: THE HYBRID TRAINING METHOD OF A CLASSIFIER BASED ON A FEATURE SPACE PARTITIONING
    Jackowski, Konrad
    Krawczyk, Bartosz
    Wozniak, Michal
    [J]. INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 2014, 24 (03)
  • [5] Combination of Multiple Classifier Using Feature Space Partitioning
    Xia Yingju
    Hou Cuiqin
    Sun Jun
    [J]. PATTERN RECOGNITION (CCPR 2016), PT I, 2016, 662 : 612 - 624
  • [6] Online Binary Space Partitioning Forests
    Fan, Xuhui
    Li, Bin
    Sisson, Scott A.
    [J]. INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 108, 2020, 108 : 527 - 536
  • [7] ADAPTIVE HIERARCHICAL SUBTENSOR PARTITIONING FOR TENSOR COMPRESSION
    Ehrlacher, Virginie
    Grigori, Laura
    Lombardi, Damiano
    Song, Hao
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2021, 43 (01): : A139 - A163
  • [8] Development of an efficient Association Rule Classifier with Temporal characteristics and Hierarchical partitioning
    Mini, T., V
    Nedunchezhian, R.
    Vijayakumar, V.
    [J]. 2016 EIGHTH INTERNATIONAL CONFERENCE ON ADVANCED COMPUTING (ICOAC), 2017, : 19 - +
  • [9] CoXCS: A Coevolutionary Learning Classifier Based on Feature Space Partitioning
    Abedini, Mani
    Kirley, Michael
    [J]. AI 2009: ADVANCES IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2009, 5866 : 360 - 369
  • [10] Hierarchical Manifold Sensing with Foveation and Adaptive Partitioning of the Dataset
    Burciu, Irina
    Martinetz, Thomas
    Barth, Erhardt
    [J]. JOURNAL OF IMAGING SCIENCE AND TECHNOLOGY, 2016, 60 (02)