Capacity expansion for transmission branches is an effective way to reduce the threat of cascading failure. However, decision making for the optimal expansion plan may incur high computational burden. A practical way to address this issue is to find out some critical branches as the candidates. Thus, this paper proposes a novel simulation data based analytical approach to identify those critical transmission branches that have higher importance in the propagation of cascading failures. First, a large number of cascading failure chains are sampled and then partitioned into stages. Second, a comprehensive metric is proposed to quantify the interaction strength among the failure branches in adjacent stages. Then, a directed weighted graph is constructed to depict the statistic features of the interactions among branches. Third, the hypertext-induced topic search (HITS) algorithm is used to rate and rank this graph's vertices, and finally the key branches are identified with this ranking Case studies on IEEE 118-bus benchmark show that the proposed approach is able to identify the critical branches that are more favorable in the capacity upgrade.