On perturbed oscillators in 1-1-1 resonance:: the case of axially symmetric cubic potentials

被引:27
|
作者
Ferrer, S
Hanssmann, H
Palacián, J [1 ]
Yanguas, P
机构
[1] Univ Publ Navarra, Dept Matemat & Informat, Pamplona 31006, Spain
[2] Univ Murcia, Dept Matemat Aplicada, E-30071 Murcia, Spain
[3] Rhein Westfal TH Aachen, Inst Reine & Angew Math, D-52056 Aachen, Germany
关键词
genuine resonance; axial symmetry; normal forms; reductions; invariants; relative equilibria; periodic orbits; invariant tori; reconstruction of the flow;
D O I
10.1016/S0393-0440(01)00041-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Axially symmetric perturbations of the isotropic harmonic oscillator in three dimensions are studied. A normal form transformation introduces a second symmetry, after truncation. The reduction of the two symmetries leads to a one-degree-of-freedom system. To this end we use a special set of action-angle variables, as well as conveniently chosen generators of the ring of invariant functions. Both approaches are compared and their advantages and disadvantages are pointed out. The reduced flow of the normal form yields information on the original system. We analyse the 2-parameter family of (arbitrary) axially symmetric cubic potentials. This family has rich dynamics, displaying all local bifurcations of co-dimension one. With the exception of six ratios of the parameter values, the dynamical behaviour close to the origin turns out to be completely determined by the normal form of order 1. We also lay the ground for a further study at the exceptional ratios. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:320 / 369
页数:50
相关论文
共 50 条
  • [1] Dynamics of Axially Symmetric Perturbed Hamiltonians in 1:1:1 Resonance
    D. Carrasco
    J. F. Palacián
    C. Vidal
    J. Vidarte
    P. Yanguas
    Journal of Nonlinear Science, 2018, 28 : 1293 - 1359
  • [2] Dynamics of Axially Symmetric Perturbed Hamiltonians in 1:1:1 Resonance
    Carrasco, D.
    Palacian, J. F.
    Vidal, C.
    Vidarte, J.
    Yanguas, P.
    JOURNAL OF NONLINEAR SCIENCE, 2018, 28 (04) : 1293 - 1359
  • [3] Hamiltonian oscillators in 1-1-1 resonance:: Normalization and integrability
    Ferrer, S
    Palacián, J
    Yanguas, P
    JOURNAL OF NONLINEAR SCIENCE, 2000, 10 (02) : 145 - 174
  • [4] PERIODIC ORBITS OF PERTURBED NON-AXIALLY SYMMETRIC POTENTIALS IN 1:1:1 AND 1:1:2 RESONANCES
    Corbera, Montserrat
    Llibre, Jaume
    Valls, Claudia
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2018, 23 (06): : 2299 - 2337
  • [5] On detuned 1:1:3 Hamiltonian resonance with cases of symmetric cubic and quartic potentials
    Mazrooei-Sebdani, Reza
    Hakimi, Elham
    CHAOS, 2020, 30 (09)
  • [6] Bifurcations and monodromy of the axially symmetric 1:1:-2 resonance
    Efstathiou, Konstantinos
    Hanssmann, Heinz
    Marchesiello, Antonella
    JOURNAL OF GEOMETRY AND PHYSICS, 2019, 146
  • [7] The 1-1-1 fallacy
    Crotty, Shane
    IMMUNOLOGICAL REVIEWS, 2012, 247 : 133 - 142
  • [8] WHY NOT 1-1-1
    AVIS, WE
    HARVARD BUSINESS REVIEW, 1982, 60 (06) : 184 - 184
  • [9] Reduction and Reconstruction of the Oscillator in 1:1:2 Resonance plus an Axially Symmetric Polynomial Perturbation
    Rothen, Yocelyn Perez
    Vidal, Claudio
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2024, 23 (03): : 2489 - 2532
  • [10] Hamiltonian Oscillators in 1—1—1 Resonance: Normalization and Integrability
    S. Ferrer
    J. Palacián
    P. Yanguas
    Journal of Nonlinear Science, 2000, 10 : 145 - 174