Microstructure evolution of zircaloy-4 during Ne ion irradiation and annealing: An in situ TEM investigation

被引:11
|
作者
Shen Hua-Hai [1 ,2 ]
Peng Shu-Ming [3 ]
Zhou Xiao-Song [3 ]
Sun Kai [2 ]
Wang Lu-Ming [2 ]
Zu Xiao-Tao [1 ]
机构
[1] Univ Elect Sci & Technol China, Sch Phys Elect, Chengdu 610054, Peoples R China
[2] Univ Michigan, Dept Mat Sci & Engn, Ann Arbor, MI 48109 USA
[3] China Acad Engn Phys, Inst Nucl Phys & Chem, Mianyang 621900, Peoples R China
基金
中国国家自然科学基金;
关键词
recrystallization; dislocation; radiation damage; zircaloy-4; INDUCED AMORPHIZATION; PROTON; CRYSTALLIZATION; STABILITY; BEHAVIOR; CREEP;
D O I
10.1088/1674-1056/23/3/036102
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The microstructural evolution of zircaloy-4 was studied, including the amorphization and recrystallization of Zr(Fe, Cr)(2) precipitates, and the density of dislocations under in situ Ne ion irradiation and post annealing. The results show that irradiation at a relatively high temperature and dose induces the formation of nanocrystals in pre-amorphized Zr(Fe, Cr)(2) precipitates. The recrystallized nanocrystals also have the structure of hcp-Zr(Fe, Cr)(2). The formation of the nanocrystals is thought to be the consequence of competition between atomistic disordering and the recrystallization of precipitates under ion irradiation. The free energy of the nanocrystal is lower than that of the amorphous state, which is another reason for the recrystallization of the precipitates. With increased annealing temperature, the density of the nanocrystals is increased. The dislocation density sharply decreases with the increase in the annealing temperature, and its size increases.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Microstructure evolution of zircaloy-4 during Ne ion irradiation and annealing: An in situ TEM investigation
    申华海
    彭述明
    周晓松
    孙凯
    王鲁闽
    祖小涛
    Chinese Physics B, 2014, 23 (03) : 445 - 449
  • [2] Effect of ion irradiation on microstructure and hardness in Zircaloy-4
    Zu, XT
    Atzmon, M
    Wang, LM
    You, LP
    Wan, FR
    Was, GS
    Adamson, RB
    Effects of Radiation on Materials: 21st International Symposium, 2004, 1447 : 741 - 752
  • [3] Corrosion resistance and microstructure of zircaloy-4 subjected to ion irradiation
    Bai, XD
    Chen, XW
    Xu, J
    Zhou, QG
    Chen, BS
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2004, 217 (02): : 293 - 299
  • [4] Effect of He implantation on the microstructure of zircaloy-4 studied using in situ TEM
    Tunes, M. A.
    Harrison, R. W.
    Greaves, G.
    Hinks, J. A.
    Donnelly, S. E.
    JOURNAL OF NUCLEAR MATERIALS, 2017, 493 : 230 - 238
  • [5] Microstructure evolution of recrystallized Zircaloy-4 under charged particles irradiation
    Gaume, M.
    Onimus, F.
    Dupuy, L.
    Tissot, O.
    Bachelet, C.
    Mompiou, F.
    JOURNAL OF NUCLEAR MATERIALS, 2017, 495 : 516 - 528
  • [6] Microstructure and electrochemical properties of Zircaloy-4 under Fe ion irradiation
    Chen, XW
    Bai, XD
    Deng, PY
    Zhou, QG
    Yu, RH
    Chen, BS
    VACUUM, 2004, 72 (04) : 467 - 473
  • [7] In Situ TEM Observation of Growth Process of Zirconium Hydride in Zircaloy-4 during Hydrogen Ion Implantation
    Shinohara, Yasunari
    Abe, Hiroaki
    Iwai, Takeo
    Sekimura, Naoto
    Kido, Toshiya
    Yamamoto, Hiroyuki
    Taguchi, Tomitsugu
    JOURNAL OF NUCLEAR SCIENCE AND TECHNOLOGY, 2009, 46 (06) : 564 - 571
  • [8] Microstructure evolution of cold-worked Zircaloy-4 under 20 mev Cu ion irradiation
    Naceri, S. E.
    Izerrouken, M.
    Ishaq, A.
    Guittoum, A.
    Sari, A.
    Khereddine, A.
    Kadouma, M.
    Menchi, O.
    Ghamnia, M.
    PHILOSOPHICAL MAGAZINE LETTERS, 2019, 99 (04) : 157 - 165
  • [9] Microstructure characterization of a hydride blister in Zircaloy-4 by EBSD and TEM
    Long, F.
    Kerr, D.
    Domizzi, G.
    Wang, Q.
    Daymond, M. R.
    ACTA MATERIALIA, 2017, 129 : 450 - 461
  • [10] In-situ Heating Investigation on Lattice Evolution of Zircaloy-4 during Its Oxidation Process
    Wang Z.
    Zhou B.
    Zhu W.
    Wen B.
    Tang H.
    Fang Z.
    2017, Atomic Energy Press (38): : 140 - 144