Statistical Baselines from Random Matrix Theory

被引:0
|
作者
Voultsidou, Marotesa [1 ]
Herrmann, J. Michael [2 ]
机构
[1] Univ Crete, Dept Phys, POB 2208, Iraklion, Crete, Greece
[2] Univ Edinburgh, Inst Percept Action & Behaviour Informat Forum, Edinburgh EH8 9YL, Midlothian, Scotland
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Quantitative descriptors of intrinsic properties of imaging data can be obtained from the theory of random matrices (RMT). Based on theoretical results for standardized data, RMT offers a systematic approach to surrogate data which allows us to evaluate the significance of deviations from the random baseline. Considering exemplary fMRI data sets recorded at a visuo-motor task and rest, we show their distinguishability by RMT-based quantities and demonstrate that the degree of sparseness and of localization can be evaluated in a strict way, provided that the data are sufficiently well described by the pairwise cross-correlations.
引用
收藏
页码:362 / +
页数:2
相关论文
共 50 条
  • [1] From random matrix theory to statistical mechanics - Anyon gas
    Alonso, D
    Jain, SR
    [J]. PHYSICS LETTERS B, 1996, 387 (04) : 812 - 816
  • [2] Random matrix theory in lattice statistical mechanics
    d'Auriac, JCA
    Maillard, JM
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2003, 321 (1-2) : 325 - 333
  • [3] Statistical properties of eigenstates beyond random matrix theory
    Heller, EJ
    [J]. MOLECULAR PHYSICS, 2006, 104 (08) : 1207 - 1216
  • [4] RANDOM MATRIX-THEORY AS STATISTICAL-MECHANICS
    DIETZ, B
    HAAKE, F
    [J]. EUROPHYSICS LETTERS, 1989, 9 (01): : 1 - 6
  • [5] Random matrix theory and classical statistical mechanics: Spin models
    Meyer, H
    dAuriac, JCA
    [J]. PHYSICAL REVIEW E, 1997, 55 (06): : 6608 - 6617
  • [6] Statistical Tests for Signal Detection Using Random Matrix Theory
    Ujjinimatad, Rohitha
    Patil, Siddarama. R.
    [J]. 2012 INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS, NETWORKING AND MOBILE COMPUTING (WICOM), 2012,
  • [7] Random matrix theory and classical statistical mechanics: Vertex models
    Meyer, H
    dAuriac, JCA
    Maillard, JM
    [J]. PHYSICAL REVIEW E, 1997, 55 (05): : 5380 - 5392
  • [8] A generalization of random matrix theory and its application to statistical physics
    Wang, Duan
    Zhang, Xin
    Horvatic, Davor
    Podobnik, Boris
    Stanley, H. Eugene
    [J]. CHAOS, 2017, 27 (02)
  • [9] Random discrete Schrodinger operators from random matrix theory
    Breuer, Jonathan
    Forrester, Peter J.
    Smilansky, Uzy
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (05) : F161 - F168
  • [10] Vertices from replica in a random matrix theory
    Brezin, E.
    Hikami, S.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (45) : 13545 - 13566