The Selection of the Step-Size Factor in the Variable Step-Size CMA

被引:0
|
作者
Liu, Jia [2 ]
Zhao, Baofeng [1 ]
机构
[1] Taiyuan Univ Technol, Coll Min Engn, Taiyuan 030024, Peoples R China
[2] Shanxi Polytech Coll, Dept Elect Informat Engn, Taiyuan 030006, Peoples R China
关键词
Blind equalization; Variable step-size; CMA;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper analyses the selection of the step-size factor in a new variable step-size constant modulus algorithm (CMA) based on mean square error (MSE) and determines the value range of the step-size factor by computer simulation, which establishes the solid foundation to the convergence superiority of the new algorithm by computer simulation.
引用
收藏
页码:288 / +
页数:2
相关论文
共 50 条
  • [1] Research of the step-size factor in adaptive variable step-size blind equalization algorithm
    Zhang, LY
    Cheng, HQ
    Liu, T
    Wang, HK
    [J]. ICEMI 2005: Conference Proceedings of the Seventh International Conference on Electronic Measurement & Instruments, Vol 3, 2005, : 667 - 670
  • [2] Richardson estimator with variable step-size
    Aïd, R
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1999, 329 (09): : 833 - 837
  • [3] Superior step-size theorem and its applicationParallel variable step-size LMS filters algorithm
    Yuantao Gu
    Kun Tang
    Huijuan Cui
    [J]. Science in China Series F: Information Sciences, 2004, 47 : 151 - 160
  • [4] A variable step-size affine projection algorithm with a step-size scaler against impulsive measurement noise
    Song, Insun
    Park, PooGyeon
    [J]. SIGNAL PROCESSING, 2014, 96 : 321 - 324
  • [5] Optimum step-size control for a variable step-size stereo acoustic echo canceller in the frequency domain
    Yan, Zhenhai
    Yang, Feiran
    Yang, Jun
    [J]. SPEECH COMMUNICATION, 2020, 124 : 21 - 27
  • [6] A variable step-size selection method for implicit integration schemes
    Holsapple, Raymond
    Iyer, Ram
    Doman, David
    [J]. 2006 AMERICAN CONTROL CONFERENCE, VOLS 1-12, 2006, 1-12 : 3013 - +
  • [7] Superior step-size theorem and its application - Parallel variable step-size LMS filters algorithm
    Gu, YT
    Tang, K
    Cui, HJ
    [J]. SCIENCE IN CHINA SERIES F-INFORMATION SCIENCES, 2004, 47 (02): : 151 - 160
  • [9] A Variable Step-Size Normalized Subband Adaptive Filter With a Step-Size Scaler Against Impulsive Measurement Noise
    Hur, Junwoong
    Song, Insun
    Park, Poogyeon
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2017, 64 (07) : 842 - 846
  • [10] An approach to variable step-size LMS algorithm
    Krstajic, B
    Stankovic, LJ
    Uskokovic, Z
    [J]. ELECTRONICS LETTERS, 2002, 38 (16) : 927 - 928