Node Placement Optimization of Wireless Sensor Networks Using Multi-Objective Adaptive Degressive Ary Number Encoded Genetic Algorithm

被引:7
|
作者
Zhang, Yijie [1 ]
Liu, Mandan [1 ]
机构
[1] East China Univ Sci & Technol, Key Lab Adv Control & Optimizat Chem Proc, Minist Educ, 130 Meilong Rd, Shanghai 200237, Peoples R China
关键词
wireless sensor networks; node placement; a fast non-dominated sorted genetic algorithm (NSGA2); degressive ary number; adaptive; DEPLOYMENT; COVERAGE;
D O I
10.3390/a13080189
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The wireless sensor network (WSN) has the advantages of low cost, high monitoring accuracy, good fault tolerance, remote monitoring and convenient maintenance. It has been widely used in various fields. In the WSN, the placement of node sensors has a great impact on its coverage, energy consumption and some other factors. In order to improve the convergence speed of a node placement optimization algorithm, the encoding method is improved in this paper. The degressive ary number encoding is further extended to a multi-objective optimization problem. Furthermore, the adaptive changing rule of ary number is proposed by analyzing the experimental results of theN-ary number encoded algorithm. Then a multi-objective optimization algorithm adopting the adaptive degressive ary number encoding method has been used in optimizing the node placement in WSN. The experiments show that the proposed adaptive degressive ary number encoded algorithm can improve both the optimization effect and search efficiency when solving the node placement problem.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] An improved genetic algorithm encoded by adaptive degressive ary number
    Zhang, Yijie
    Liu, Mandan
    SOFT COMPUTING, 2018, 22 (20) : 6861 - 6875
  • [2] An improved genetic algorithm encoded by adaptive degressive ary number
    Yijie Zhang
    Mandan Liu
    Soft Computing, 2018, 22 : 6861 - 6875
  • [3] MOGAMESH: A Multi-Objective Algorithm for Node Placement in Wireless Mesh Networks based on Genetic Algorithms
    De Marco, Giuseppe
    2009 6TH INTERNATIONAL SYMPOSIUM ON WIRELESS COMMUNICATION SYSTEMS (ISWCS 2009), 2009, : 388 - 392
  • [4] Fog node placement using multi-objective genetic algorithm
    Singh S.
    Vidyarthi D.P.
    International Journal of Information Technology, 2024, 16 (2) : 713 - 719
  • [5] Layout optimization for a wireless sensor network using a multi-objective genetic algorithm
    Jourdan, DB
    de Weck, OL
    VTC2004-SPRING: 2004 IEEE 59TH VEHICULAR TECHNOLOGY CONFERENCE, VOLS 1-5, PROCEEDINGS, 2004, : 2466 - 2470
  • [6] Relay node deployment for wireless sensor networks using evolutionary multi-objective algorithm
    Wang, Qiang
    Liu, Hai-Lin
    Gu, Fangqing
    INTERNATIONAL JOURNAL OF SENSOR NETWORKS, 2019, 31 (03) : 189 - 197
  • [7] Multi-Objective Biological Mimicry Optimization Algorithm for WSN Sensor Node Placement
    Abidin, H. Zainol
    Din, N. M.
    Radzi, N. A. M.
    2014 IEEE 2ND INTERNATIONAL SYMPOSIUM ON TELECOMMUNICATION TECHNOLOGIES (ISTT), 2014, : 310 - 315
  • [8] Multi-objective Directional Sensor Placement for Wireless Sensor Networks
    Chcng, Chi-Tsun
    Leung, Henry
    2014 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2014, : 510 - 513
  • [9] Sensor Node Placement in Wireless Sensor Network Using Multi-objective Territorial Predator Scent Marking Algorithm
    Abidin, H. Zainol
    Din, N. M.
    Yassin, I. M.
    Omar, H. A.
    Radzi, N. A. M.
    Sadon, S. K.
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2014, 39 (08) : 6317 - 6325
  • [10] Sensor Node Placement in Wireless Sensor Network Using Multi-objective Territorial Predator Scent Marking Algorithm
    H. Zainol Abidin
    N. M. Din
    I. M. Yassin
    H. A. Omar
    N. A. M. Radzi
    S. K. Sadon
    Arabian Journal for Science and Engineering, 2014, 39 : 6317 - 6325