SHARP MAXIMAL INEQUALITY FOR MARTINGALES AND STOCHASTIC INTEGRALS

被引:9
|
作者
Osekowski, Adam [1 ]
机构
[1] Univ Warsaw, Dept Math Informat & Mech, PL-02097 Warsaw, Poland
关键词
Martingale; stochastic integral; maximal function;
D O I
10.1214/ECP.v14-1438
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let X = (X-t)(t >= 0) be a martingale and H = (H-t)(t >= 0) be a predictable process taking values in [-1,1]. Let Y denote the stochastic integral of H with respect to X. We show that parallel to sup(t >= 0) Y-t parallel to(1) <= beta(0)parallel to sup(t >= 0)vertical bar X-t parallel to vertical bar(1), where beta(0) = 2,0856 ... is the best possible. Furthermore, if, in addition, X is nonnegative, then parallel to sup(t >= 0) Y-t parallel to(1) <= beta(+)(0)parallel to sup(t >= 0)X(t)parallel to(1), where beta(+)(0) = 14/9 is the best possible.
引用
收藏
页码:17 / 30
页数:14
相关论文
共 50 条