Amendable Gaussian channels: Restoring entanglement via a unitary filter

被引:8
|
作者
De Pasquale, A. [1 ,2 ]
Mari, A. [1 ,2 ]
Porzio, A. [3 ]
Giovannetti, V. [1 ,2 ]
机构
[1] Scuola Normale Super Pisa, NEST, I-56126 Pisa, Italy
[2] CNR, Ist Nanosci, I-56126 Pisa, Italy
[3] CNR SPIN Complesso Univ Monte St Angelo, I-80126 Naples, Italy
关键词
SEPARABILITY CRITERION; STATES;
D O I
10.1103/PhysRevA.87.062307
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We show that there exist Gaussian channels which are amendable. A channel that is entanglement-breaking of order 2 [A. De Pasquale and V. Giovannetti, Phys. Rev. A 86, 052302 (2012)] is amendable if there exists an unitary filter that, once applied in between two actions of the channel, removes the entanglement-breaking property of the overall transformation. We find that, depending on the structure of the channel, the unitary filter can be a squeezing transformation or a phase-shift operation. We also propose two realistic quantum optics experiments where the amendability of Gaussian channels can be verified by exploiting the fact that it is sufficient to test the entanglement-breaking properties of two-mode Gaussian channels on input states with finite energy (which are not maximally entangled).
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Amending entanglement-breaking channels via intermediate unitary operations
    Cuevas, A.
    De Pasquale, A.
    Mari, A.
    Orieux, A.
    Duranti, S.
    Massaro, M.
    Di Carli, A.
    Roccia, E.
    Ferraz, J.
    Sciarrino, F.
    Mataloni, P.
    Giovannetti, V.
    [J]. PHYSICAL REVIEW A, 2017, 96 (02)
  • [2] Quantum correlations in Gaussian states via Gaussian channels: steering, entanglement, and discord
    Zhong-Xiao Wang
    Shuhao Wang
    Qiting Li
    Tie-Jun Wang
    Chuan Wang
    [J]. Quantum Information Processing, 2016, 15 : 2441 - 2453
  • [3] Quantum correlations in Gaussian states via Gaussian channels: steering, entanglement, and discord
    Wang, Zhong-Xiao
    Wang, Shuhao
    Li, Qiting
    Wang, Tie-Jun
    Wang, Chuan
    [J]. QUANTUM INFORMATION PROCESSING, 2016, 15 (06) : 2441 - 2453
  • [4] Optimal unitary dilation for bosonic Gaussian channels
    Institut für Theoretische Physik, Universität Ulm, Albert-Einstein-Allee 11, D-89069 Ulm, Germany
    不详
    不详
    不详
    [J]. Phys Rev A, 2
  • [5] Optimal unitary dilation for bosonic Gaussian channels
    Caruso, Filippo
    Eisert, Jens
    Giovannetti, Vittorio
    Holevo, Alexander S.
    [J]. PHYSICAL REVIEW A, 2011, 84 (02):
  • [6] Nonoptimality of unitary encoding with quantum channels assisted by entanglement
    Beran, Michael R.
    Cohen, Scott M.
    [J]. PHYSICAL REVIEW A, 2008, 78 (06):
  • [7] Entanglement generation via non-Gaussian transfer over atmospheric fading channels
    Hosseinidehaj, Nedasadat
    Malaney, Robert
    [J]. PHYSICAL REVIEW A, 2015, 92 (06):
  • [8] Optimal probe states for the estimation of Gaussian unitary channels
    Safranek, Dominik
    Fuentes, Ivette
    [J]. PHYSICAL REVIEW A, 2016, 94 (06)
  • [9] Gaussian entanglement distribution via satellite
    Hosseinidehaj, Nedasadat
    Malaney, Robert
    [J]. PHYSICAL REVIEW A, 2015, 91 (02):
  • [10] From squeezing to Gaussian entanglement via beamsplitters
    Fu, Shuangshuang
    Luo, Shunlong
    Zhang, Yue
    [J]. JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2020, 53 (08)