Insights into the genome structure and copy-number variation of Eimeria tenella

被引:12
|
作者
Lim, Lik-Sin [1 ,3 ]
Tay, Yea-Ling [1 ,3 ]
Alias, Halimah [1 ]
Wan, Kiew-Lian [1 ,3 ]
Dear, Paul H. [2 ]
机构
[1] Univ Kebangsaan Malaysia, Fac Sci & Technol, Sch Biosci & Biotechnol, Ukm Bangi 43600, Selangor DE, Malaysia
[2] MRC Lab Mol Biol, Cambridge CB2 0QH, England
[3] Malaysia Genome Inst, Kajang 43000, Selangor DE, Malaysia
来源
BMC GENOMICS | 2012年 / 13卷
关键词
SEQUENCE; APICOMPLEXAN; MAP;
D O I
10.1186/1471-2164-13-389
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: Eimeria is a genus of parasites in the same phylum (Apicomplexa) as human parasites such as Toxoplasma, Cryptosporidium and the malaria parasite Plasmodium. As an apicomplexan whose life-cycle involves a single host, Eimeria is a convenient model for understanding this group of organisms. Although the genomes of the Apicomplexa are diverse, that of Eimeria is unique in being composed of large alternating blocks of sequence with very different characteristics - an arrangement seen in no other organism. This arrangement has impeded efforts to fully sequence the genome of Eimeria, which remains the last of the major apicomplexans to be fully analyzed. In order to increase the value of the genome sequence data and aid in the effort to gain a better understanding of the Eimeria tenella genome, we constructed a whole genome map for the parasite. Results: A total of 1245 contigs representing 70.0% of the whole genome assembly sequences (Wellcome Trust Sanger Institute) were selected and subjected to marker selection. Subsequently, 2482 HAPPY markers were developed and typed. Of these, 795 were considered as usable markers, and utilized in the construction of a HAPPY map. Markers developed from chromosomally-assigned genes were then integrated into the HAPPY map and this aided the assignment of a number of linkage groups to their respective chromosomes. BAC-end sequences and contigs from whole genome sequencing were also integrated to improve and validate the HAPPY map. This resulted in an integrated HAPPY map consisting of 60 linkage groups that covers approximately half of the estimated 60 Mb genome. Further analysis suggests that the segmental organization first seen in Chromosome 1 is present throughout the genome, with repeat-poor (P) regions alternating with repeat-rich (R) regions. Evidence of copy-number variation between strains was also uncovered. Conclusions: This paper describes the application of a whole genome mapping method to improve the assembly of the genome of E. tenella from shotgun data, and to help reveal its overall structure. A preliminary assessment of copy-number variation (extra or missing copies of genomic segments) between strains of E. tenella was also carried out. The emerging picture is of a very unusual genome architecture displaying inter-strain copy-number variation. We suggest that these features may be related to the known ability of this parasite to rapidly develop drug resistance.
引用
下载
收藏
页数:10
相关论文
共 50 条
  • [1] Insights into the genome structure and copy-number variation of Eimeria tenella
    Lik-Sin Lim
    Yea-Ling Tay
    Halimah Alias
    Kiew-Lian Wan
    Paul H Dear
    BMC Genomics, 13
  • [2] Copy-number variation: the end of the human genome?
    Dear, Paul H.
    TRENDS IN BIOTECHNOLOGY, 2009, 27 (08) : 448 - 454
  • [3] Copy-number variation
    Du Toit A.
    Nature Reviews Microbiology, 2020, 18 (10) : 542 - 542
  • [4] Segmental duplications and copy-number variation in the human genome
    Sharp, AJ
    Locke, DP
    McGrath, SD
    Cheng, Z
    Bailey, JA
    Vallente, RU
    Pertz, LM
    Clark, RA
    Schwartz, S
    Segraves, R
    Oseroff, VV
    Albertson, DG
    Pinkel, D
    Eichler, EE
    AMERICAN JOURNAL OF HUMAN GENETICS, 2005, 77 (01) : 78 - 88
  • [5] Implications of copy-number variation in the human genome: a time for questions
    Abdallah S. Daar
    Stephen W. Scherer
    Robert A. Hegele
    Nature Reviews Genetics, 2006, 7 : 414 - 414
  • [6] Extending genome-wide association studies to copy-number variation
    McCarroll, Steven A.
    HUMAN MOLECULAR GENETICS, 2008, 17 : R135 - R142
  • [7] Copy number variation: New insights in genome diversity
    Freeman, Jennifer L.
    Perry, George H.
    Feuk, Lars
    Redon, Richard
    McCarroll, Steven A.
    Altshuler, David M.
    Aburatani, Hiroyuki
    Jones, Keith W.
    Tyler-Smith, Chris
    Hurles, Matthew E.
    Carter, Nigel P.
    Scherer, Stephen W.
    Lee, Charles
    GENOME RESEARCH, 2006, 16 (08) : 949 - 961
  • [8] Ethics watch - Implications of copy-number variation in the human genome: A time for questions
    Daar, AS
    Scherer, SW
    Hegele, RA
    NATURE REVIEWS GENETICS, 2006, 7 (06) : 414 - 414
  • [9] Cyanobacteria Maintain Constant Protein Concentration despite Genome Copy-Number Variation
    Zheng, Xiao-yu
    O'Shea, Erin K.
    CELL REPORTS, 2017, 19 (03): : 497 - 504
  • [10] Copy-number variation in congenital heart disease
    Ehrlich, Laurent
    Prakash, Siddharth K.
    CURRENT OPINION IN GENETICS & DEVELOPMENT, 2022, 77