Variance reduced Monte Carlo methods for PDEs.

被引:0
|
作者
Newton, NJ
机构
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Optimal control variates within parametric classes are developed, which can be used with stochastic representation formulae of the Feynman-Kac type to yield variance reduced Monte Carlo methods for a class of parabolic partial differential equations; these include equations with variable coefficients. The technique involves an initial, auxilliary simulation to estimate the optimal values of a set of parameters. Once these have been estimated, the optimal control variate can be simulated jointly with the basic variate with little extra computation.
引用
收藏
页码:327 / 330
页数:4
相关论文
共 50 条
  • [1] Variance reduced Monte Carlo methods for PDEs
    Newton, N.J.
    [J]. Zeitschrift fuer Angewandte Mathematik und Mechanik, ZAMM, Applied Mathematics and Mechanics, 76 (Suppl 3):
  • [2] Stochastic Variance-Reduced Hamilton Monte Carlo Methods
    Zou, Difan
    Xu, Pan
    Gu, Quanquan
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 80, 2018, 80
  • [3] Reduced Variance Random Batch Methods for Nonlocal PDEs
    Pareschi, Lorenzo
    Zanella, Mattia
    [J]. ACTA APPLICANDAE MATHEMATICAE, 2024, 191 (01)
  • [4] Methods for variance reduction in Monte Carlo simulations
    Bixler, Joel N.
    Hokr, Brett H.
    Winblad, Aidan
    Elpers, Gabriel
    Zollars, Byron
    Thomas, Robert J.
    [J]. OPTICAL INTERACTIONS WITH TISSUE AND CELLS XXVII, 2016, 9706
  • [5] MULTILEVEL MONTE CARLO METHODS FOR STOCHASTIC ELLIPTIC MULTISCALE PDES
    Abdulle, Assyr
    Barth, Andrea
    Schwab, Christoph
    [J]. MULTISCALE MODELING & SIMULATION, 2013, 11 (04): : 1033 - 1070
  • [6] Variance Reduction Monte Carlo methods for wind turbines
    Sichani, M. T.
    Nielsen, S. R. K.
    Thoft-Christensen, P.
    [J]. APPLICATIONS OF STATISTICS AND PROBABILITY IN CIVIL ENGINEERING, 2011, : 141 - 149
  • [7] Multilevel Monte Carlo methods and applications to elliptic PDEs with random coefficients
    Cliffe, K. A.
    Giles, M. B.
    Scheichl, R.
    Teckentrup, A. L.
    [J]. COMPUTING AND VISUALIZATION IN SCIENCE, 2011, 14 (01) : 3 - 15
  • [8] Pricing high-dimensional Bermudan options using variance-reduced Monte Carlo methods
    Hepperger, Peter
    [J]. JOURNAL OF COMPUTATIONAL FINANCE, 2013, 16 (03) : 99 - 126
  • [9] Uncertainty Quantification for the BGK Model of the Boltzmann Equation Using Multilevel Variance Reduced Monte Carlo Methods
    Hu, Jingwei
    Pareschi, Lorenzo
    Wang, Yubo
    [J]. SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2021, 9 (02): : 650 - 680
  • [10] Variance reduction techniques and quasi-Monte Carlo methods
    Wang, XQ
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2001, 132 (02) : 309 - 318