MODIFIED FINITE ELEMENT NUMERICAL METHOD FOR SOLVING CONFORMABLE SPACE-TIME FRACTIONAL NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS

被引:0
|
作者
Hadhoud, Adel Rashad [1 ]
Abd Alaal, Faisal Ezz-Eldeen [2 ]
Radwan, Taha [3 ,4 ]
机构
[1] Menoufia Univ, Fac Sci, Dept Math & Comp Sci, Shibin Al Kawm, Egypt
[2] Damanhour Univ, Fac Sci, Dept Math, Damanhour, Egypt
[3] Qassim Univ, Coll Sci & Arts, Dept Math, Ar Rass, Saudi Arabia
[4] Port Said Univ, Fac Management Technol & Informat Syst, Dept Math & Stat, Port Said, Egypt
关键词
Space-Time Fractional Partial Differential Equation; Galerkin Method; Cubic B-Spline Polynomials; Von Neumann Method; Stability;
D O I
10.1142/S0218348X22402472
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper shows how to approximate the solution to a nonlinear conformable space-time fractional partial differential equations. The proposed method is based on the Cubic B-spline polynomials and Galerkin method. Two test problems show that the approach we use to approximate the proposed equation is accurate and efficient. We apply the Von Neumann approach to show that stability requires some conditions.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Numerical solution of the nonlinear conformable space-time fractional partial differential equations
    Yaslan, H. Cerdik
    [J]. INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2021, 52 (02): : 407 - 419
  • [2] A space-time finite element method for solving linear Riesz space fractional partial differential equations
    Junjiang Lai
    Fawang Liu
    Vo V. Anh
    Qingxia Liu
    [J]. Numerical Algorithms, 2021, 88 : 499 - 520
  • [3] A space-time finite element method for solving linear Riesz space fractional partial differential equations
    Lai, Junjiang
    Liu, Fawang
    Anh, Vo V.
    Liu, Qingxia
    [J]. NUMERICAL ALGORITHMS, 2021, 88 (01) : 499 - 520
  • [4] Conformable finite element method for conformable fractional partial differential equations
    Sadek, Lakhlifa
    Lazar, Tania A.
    Hashim, Ishak
    [J]. AIMS MATHEMATICS, 2023, 8 (12): : 28858 - 28877
  • [5] Numerical solution of the nonlinear conformable space–time fractional partial differential equations
    H. Çerdik Yaslan
    [J]. Indian Journal of Pure and Applied Mathematics, 2021, 52 : 407 - 419
  • [6] Solving nonlinear space-time fractional differential equations via ansatz method
    Guner, Ozkan
    Bekir, Ahmet
    [J]. COMPUTATIONAL METHODS FOR DIFFERENTIAL EQUATIONS, 2018, 6 (01): : 1 - 11
  • [7] Legendre Collocation Method for the Nonlinear Space-Time Fractional Partial Differential Equations
    Yaslan, Handan Cerdik
    [J]. IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2020, 44 (A1): : 239 - 249
  • [8] Analytical Solutions for Nonlinear Systems of Conformable Space-Time Fractional Partial Differential Equations via Generalized Fractional Differential Transform
    Hayman Thabet
    Subhash Kendre
    James Peters
    [J]. Vietnam Journal of Mathematics, 2019, 47 : 487 - 507
  • [9] Analytical Solutions for Nonlinear Systems of Conformable Space-Time Fractional Partial Differential Equations via Generalized Fractional Differential Transform
    Thabet, Hayman
    Kendre, Subhash
    Peters, James
    [J]. VIETNAM JOURNAL OF MATHEMATICS, 2019, 47 (02) : 487 - 507
  • [10] The extended tanh method for solving conformable space-time fractional KdV equations
    Yaslan, H. Cerdik
    Girgin, Ayse
    [J]. INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2021, 12 (01): : 1181 - 1194