Using macroscopic information in image segmentation

被引:0
|
作者
Khan, Asmar Azar [1 ]
Xydeas, Costas [1 ]
Ahmed, Hassan [1 ]
机构
[1] Univ Lancaster, Sch Comp & Commun, Lancaster LA1 4WA, England
关键词
D O I
10.1049/iet-ipr.2012.0243
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Post-processing 'macroscopically' output-segmented images obtained from conventional image segmentation ( IS) techniques, leads into the concept of micro-macro IS (MMIS). MMIS pays extra attention to information extracted from relatively large image regions and as a result, overall system segmentation performance improves both subjectively and objectively. The proposed post-processing scheme is generic, in the sense that can be used together with any other existing segmentation approach. Thus given an input-segmented image, MMIS has the ability to automatically select an appropriate number of regions and classes in a way that helps object-oriented visual information to become more apparent in the final segmented output image. Computer simulation results clearly indicate that significant IS performance benefits can be obtained by augmenting conventional IS schemes within an MMIS framework, with or without input images being corrupted by additive Gaussian noise
引用
收藏
页码:219 / 228
页数:10
相关论文
共 50 条
  • [1] Using contour information for image segmentation
    Nguyen Duong Trung Dung
    Huynh Thi Thanh Binh
    [J]. 2013 INTERNATIONAL CONFERENCE OF SOFT COMPUTING AND PATTERN RECOGNITION (SOCPAR), 2013, : 258 - 263
  • [2] Image segmentation using information theoretic criteria
    Hibbard, LS
    [J]. MEDICAL IMAGING 2003: IMAGE PROCESSING, PTS 1-3, 2003, 5032 : 1639 - 1649
  • [3] Improving image segmentation using edge information
    Chowdhury, MI
    Robinson, JA
    [J]. 2000 CANADIAN CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING, CONFERENCE PROCEEDINGS, VOLS 1 AND 2: NAVIGATING TO A NEW ERA, 2000, : 312 - 316
  • [4] Fuzzy image segmentation using shape information
    Ali, MA
    Karmakar, GC
    Dooley, LS
    [J]. 2005 IEEE International Conference on Multimedia and Expo (ICME), Vols 1 and 2, 2005, : 739 - 742
  • [5] Image Segmentation Using Information Bottleneck Method
    Bardera, Anton
    Rigau, Jaume
    Boada, Imma
    Feixas, Miquel
    Sbert, Mateu
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2009, 18 (07) : 1601 - 1612
  • [6] Image segmentation using intensity and color information
    Kanai, Y
    [J]. VISUAL COMMUNICATIONS AND IMAGE PROCESSING '98, PTS 1 AND 2, 1997, 3309 : 709 - 720
  • [7] SAR Image Segmentation Using the Roughness Information
    Avila Rodrigues, F. A.
    Rocha Neto, J. F. S.
    Pinheiro Marques, R. C.
    Sombra de Medeiros, F. N.
    Santos Nobre, J.
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2016, 13 (02) : 132 - 136
  • [8] ON IMAGE SEGMENTATION USING INFORMATION THEORETIC CRITERIA
    Aue, Alexander
    Lee, Thomas C. M.
    [J]. ANNALS OF STATISTICS, 2011, 39 (06): : 2912 - 2935
  • [9] CT image segmentation using information theoretic criteria
    Hibbard, L
    [J]. RADIOTHERAPY AND ONCOLOGY, 2003, 68 : S96 - S96
  • [10] Image segmentation by using image abstraction and 3D information
    Sugaya, Yoshihiro
    Tsuchida, Hiroko
    Omachi, Shinichiro
    [J]. Journal of the Institute of Image Electronics Engineers of Japan, 2015, 44 (03) : 474 - 483