Mathematical Transform Based on Regions Semantic for Improving Biomedical Images Segmentation

被引:0
|
作者
Alioscha-Perez, M. [1 ]
Taboada-Crispi, A. [1 ]
Sahli, H. [2 ]
机构
[1] Univ Cent Las Villas CEETI, Santa Clara, Cuba
[2] Vrije Univ Brussel ETRO, Brussels, Belgium
关键词
image transform; automatic thresholding; one-class SVM; region of interest; machine learning; CLASSIFICATION;
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
On this paper we propose a mathematical transform, based on several one-class support vector machines (SVM) models, to modify images at pixel level on the preprocessing stage in order to emphasize the difference of pixels between dissimilar regions. We show experimentally that the proposed transform does improve segmentation results of automatic thresholding algorithms such as Otsu, Mixture of Gaussians and k-means on biomedical images; specially in the presence of noise, clumped objects ands difficult ROI identification.
引用
收藏
页码:1058 / 1061
页数:4
相关论文
共 50 条
  • [1] Improving Semantic Segmentation Performance in Underwater Images
    Nunes, Alexandra
    Matos, Anibal
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2023, 11 (12)
  • [2] Rotation-Equivariant Semantic Instance Segmentation on Biomedical Images
    Bernander, Karl Bengtsson
    Lindblad, Joakim
    Strand, Robin
    Nystrom, Ingela
    MEDICAL IMAGE UNDERSTANDING AND ANALYSIS, MIUA 2022, 2022, 13413 : 283 - 297
  • [3] A method for improving semantic segmentation using thermographic images in infants
    Hidetsugu Asano
    Eiji Hirakawa
    Hayato Hayashi
    Keisuke Hamada
    Yuto Asayama
    Masaaki Oohashi
    Akira Uchiyama
    Teruo Higashino
    BMC Medical Imaging, 22
  • [4] A method for improving semantic segmentation using thermographic images in infants
    Asano, Hidetsugu
    Hirakawa, Eiji
    Hayashi, Hayato
    Hamada, Keisuke
    Asayama, Yuto
    Oohashi, Masaaki
    Uchiyama, Akira
    Higashino, Teruo
    BMC MEDICAL IMAGING, 2022, 22 (01)
  • [5] A Method for Improving Accuracy of DeepLabv3+Semantic Segmentation Model Based on Wavelet Transform
    Yin, Xin
    Xu, Xiaoyang
    COMMUNICATIONS, SIGNAL PROCESSING, AND SYSTEMS, VOL. 1, 2022, 878 : 688 - 693
  • [6] A new measure for comparing biomedical regions of interest in segmentation of digital images
    Conci, Aura
    Galvao, Stephenson S. L.
    Sequeiros, Giomar O.
    Saade, Debora C. M.
    MacHenry, Trueman
    DISCRETE APPLIED MATHEMATICS, 2015, 197 : 103 - 113
  • [7] Wavelet Transform Feature Enhancement for Semantic Segmentation of Remote Sensing Images
    Li, Yifan
    Liu, Ziqian
    Yang, Junli
    Zhang, Haopeng
    REMOTE SENSING, 2023, 15 (24)
  • [8] SPATIAL RELATIONAL REASONING IN NETWORKS FOR IMPROVING SEMANTIC SEGMENTATION OF AERIAL IMAGES
    Mou, Lichao
    Hua, Yuansheng
    Zhu, Xiao Xiang
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 5232 - 5235
  • [9] Discrete wavelets transform for improving greenness image segmentation in agricultural images
    Guijarro, M.
    Riomoros, I.
    Pajares, G.
    Zitinski, P.
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2015, 118 : 396 - 407
  • [10] Shape-based segmentation and characterization of biomedical images
    Lepard, KO
    Robb, RA
    MEDICAL IMAGING 1996: IMAGE PROCESSING, 1996, 2710 : 232 - 242