Computational aspects of fitting mixture models via the expectation-maximization algorithm

被引:31
|
作者
O'Hagan, Adrian [1 ]
Murphy, Thomas Brendan [1 ]
Gormley, Isobel Claire [1 ]
机构
[1] Univ Coll Dublin, Sch Math Sci, Dublin, Ireland
关键词
Convergence rate; Expectation-maximization algorithm; Hierarchical clustering; mclust; Model-based clustering; Multimodal likelihood; MAXIMUM-LIKELIHOOD; EM ALGORITHM; PERFORMANCE; DENSITIES; VALUES;
D O I
10.1016/j.csda.2012.05.011
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The Expectation-Maximization (EM) algorithm is a popular tool in a wide variety of statistical settings, in particular in the maximum likelihood estimation of parameters when clustering using mixture models. A serious pitfall is that in the case of a multimodal likelihood function the algorithm may become trapped at a local maximum, resulting in an inferior clustering solution. In addition, convergence to an optimal solution can be very slow. Methods are proposed to address these issues: optimizing starting values for the algorithm and targeting maximization steps efficiently. It is demonstrated that these approaches can produce superior outcomes to initialization via random starts or hierarchical clustering and that the rate of convergence to an optimal solution can be greatly improved. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:3843 / 3864
页数:22
相关论文
共 50 条
  • [1] Fitting nonparametric mixed logit models via expectation-maximization algorithm
    Pacifico, Daniele
    [J]. STATA JOURNAL, 2012, 12 (02): : 284 - 298
  • [2] ON THE BEHAVIOR OF THE EXPECTATION-MAXIMIZATION ALGORITHM FOR MIXTURE MODELS
    Barazandeh, Babak
    Razaviyayn, Meisam
    [J]. 2018 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP 2018), 2018, : 61 - 65
  • [3] Quantum Expectation-Maximization for Gaussian mixture models
    Kerenidis, Iordanis
    Luongo, Alessandro
    Prakash, Anupam
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 119, 2020, 119
  • [4] Multi-node Expectation-Maximization algorithm for finite mixture models
    Lee, Sharon X.
    McLachlan, Geoffrey J.
    Leemaqz, Kaleb L.
    [J]. STATISTICAL ANALYSIS AND DATA MINING, 2021, 14 (04) : 297 - 304
  • [5] Expectation-Maximization algorithm for finite mixture of α-stable distributions
    Castillo-Barnes, D.
    Martinez-Murcia, F. J.
    Ramirez, J.
    Gorriz, J. M.
    Salas-Gonzalez, D.
    [J]. NEUROCOMPUTING, 2020, 413 : 210 - 216
  • [6] The expectation-maximization algorithm
    Moon, TK
    [J]. IEEE SIGNAL PROCESSING MAGAZINE, 1996, 13 (06) : 47 - 60
  • [7] An Online Expectation-Maximization Algorithm for Changepoint Models
    Yildirim, Sinan
    Singh, Sumeetpal S.
    Doucet, Arnaud
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2013, 22 (04) : 906 - 926
  • [8] Expectation-Maximization for Adaptive Mixture Models in Graph Optimization
    Pfeifer, Tim
    Protzel, Peter
    [J]. 2019 INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2019, : 3151 - 3157
  • [9] Maximum Lq-Likelihood Estimation via the Expectation-Maximization Algorithm: A Robust Estimation of Mixture Models
    Qin, Yichen
    Priebe, Carey E.
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2013, 108 (503) : 914 - 928
  • [10] lclogit: A Stata command for fitting latent-class conditional logit models via the expectation-maximization algorithm
    Pacifico, Daniele
    Yoo, Hong Il
    [J]. STATA JOURNAL, 2013, 13 (03): : 625 - 639