Spectral asymptotics of semiclassical unitary operators

被引:1
|
作者
Le Floch, Yohann [1 ,2 ]
Pelayo, Alvaro [3 ]
机构
[1] Univ Strasbourg, UMR 7501, Inst Rech Math Avancee, 7 Rue Rene Descartes, F-67000 Strasbourg, France
[2] CNRS, 7 Rue Rene Descartes, F-67000 Strasbourg, France
[3] Univ Calif San Diego, Dept Math, 9500 Gilman Dr 0112, La Jolla, CA 92093 USA
基金
欧洲研究理事会;
关键词
Semiclassical analysis; Spectral theory; Symplectic actions; TOEPLITZ-OPERATORS; QUANTIZATION;
D O I
10.1016/j.jmaa.2019.01.015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper establishes an aspect of Bohr's correspondence principle, i.e. that quantum mechanics converges in the high frequency limit to classical mechanics, for commuting semiclassical unitary operators. We prove, under minimal assumptions, that the semiclassical limit of the convex hulls of the quantum spectrum of a collection of commuting semiclassical unitary operators converges to the convex hull of the classical spectrum of the principal symbols of the operators. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:1174 / 1202
页数:29
相关论文
共 50 条