Markov chain Monte Carlo inversion for the rheology of olivine single crystals

被引:12
|
作者
Mullet, Benjamin G. [1 ]
Korenaga, Jun [1 ]
Karato, Shun-Ichiro [1 ]
机构
[1] Yale Univ, Dept Geol & Geophys, New Haven, CT 06520 USA
基金
美国国家科学基金会;
关键词
rheology; inversion; MOLTEN UPPER-MANTLE; DIFFUSION CREEP; DISLOCATION CREEP; GRAIN-SIZE; EXPERIMENTAL CONSTRAINTS; PLASTIC-DEFORMATION; WATER; QUARTZ; CLINOPYROXENE; MECHANISMS;
D O I
10.1002/2014JB011845
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
We present major modifications to the Markov chain Monte Carlo inversion method of Korenaga and Karato (2008), which was developed to analyze rock deformation data and determine a corresponding flow law and its uncertainty. The uncertainties of state variables, e.g., temperature, pressure, and stress, are now taken into account by data randomization, to avoid parameter bias that could be introduced by the original implementation of the cost function. Also, it is now possible to handle a flow law composed of both parallel and sequential deformation mechanisms, by using conjugate gradient search to determine scaling constants. We test the new inversion algorithm extensively using synthetic data as well as the high-quality experimental data of Bai et al. (1991) on the deformation of olivine single crystals. Our reanalysis of this experimental data set reveals that a commonly adopted value for the stress exponent (approximate to 3.5) is considerably less certain than previously reported, and we offer a detailed account for the validity of our new estimates. The significance of fully reporting parameter uncertainties including covariance is also discussed with a worked example on flow law prediction under geological conditions.
引用
收藏
页码:3142 / 3172
页数:31
相关论文
共 50 条
  • [1] Markov chain Monte Carlo for petrophysical inversion
    Grana, Dario
    de Figueiredo, Leandro
    Mosegaard, Klaus
    GEOPHYSICS, 2022, 87 (01) : M13 - M24
  • [2] Reservoir Modeling Combining Geostatistics with Markov Chain Monte Carlo Inversion
    Zunino, Andrea
    Lange, Katrine
    Melnikova, Yulia
    Hansen, Thomas Mejer
    Mosegaard, Klaus
    MATHEMATICS OF PLANET EARTH, 2014, : 683 - 687
  • [3] Study on prestack seismic inversion using Markov Chain Monte Carlo
    Zhang Guang-Zhi
    Wang Dan-Yang
    Yin Xing-Yao
    Li Ning
    CHINESE JOURNAL OF GEOPHYSICS-CHINESE EDITION, 2011, 54 (11): : 2926 - 2932
  • [4] Markov Chain Monte Carlo
    Henry, Ronnie
    EMERGING INFECTIOUS DISEASES, 2019, 25 (12) : 2298 - 2298
  • [5] Parsimonious Bayesian Markov chain Monte Carlo inversion in a nonlinear geophysical problem
    Malinverno, A
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2002, 151 (03) : 675 - 688
  • [6] A geostatistical Markov chain Monte Carlo inversion algorithm for electrical resistivity tomography
    Aleardi, Mattia
    Vinciguerra, Alessandro
    Hojat, Azadeh
    NEAR SURFACE GEOPHYSICS, 2021, 19 (01) : 7 - 26
  • [7] Markov chain Monte Carlo methods for high dimensional inversion in remote sensing
    Haario, H
    Laine, M
    Lehtinen, M
    Saksman, E
    Tamminen, J
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2004, 66 : 591 - 607
  • [8] Multimodal Markov chain Monte Carlo method for nonlinear petrophysical seismic inversion
    de Figueiredo, Leandro Passos
    Grana, Dario
    Roisenberg, Mauro
    Rodrigues, Bruno B.
    GEOPHYSICS, 2019, 84 (05) : M1 - M13
  • [9] Monte Carlo-Markov Chain stochastic inversion constrained by seismic waveform
    Zhou S.
    Yin X.
    Pei S.
    Yang Y.
    Shiyou Diqiu Wuli Kantan/Oil Geophysical Prospecting, 2021, 56 (03): : 543 - 554and592
  • [10] Gaussian mixture Markov chain Monte Carlo method for linear seismic inversion
    de Figueiredo, Leandro Passos
    Grana, Dario
    Roisenberg, Mauro
    Rodrigues, Bruno B.
    GEOPHYSICS, 2019, 84 (03) : R463 - R476