Research note: Seismic attenuation due to wave-induced fluid flow at microscopic and mesoscopic scales

被引:51
|
作者
Rubino, J. German [1 ]
Holliger, Klaus [1 ]
机构
[1] Univ Lausanne, Inst Geophys, CH-1015 Lausanne, Switzerland
基金
瑞士国家科学基金会;
关键词
Acoustics; Attenuation; Modelling; Rock physics; Seismics; SQUIRT; POROELASTICITY; PROPAGATION; DISPERSION; ROCKS; MODEL;
D O I
10.1111/1365-2478.12009
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Wave-induced fluid flow at microscopic and mesoscopic scales arguably constitutes the major cause of intrinsic seismic attenuation throughout the exploration seismic and sonic frequency ranges. The quantitative analysis of these phenomena is, however, complicated by the fact that the governing physical processes may be dependent. The reason for this is that the presence of microscopic heterogeneities, such as micro-cracks or broken grain contacts, causes the stiffness of the so-called modified dry frame to be complex-valued and frequency-dependent, which in turn may affect the viscoelastic behaviour in response to fluid flow at mesoscopic scales. In this work, we propose a simple but effective procedure to estimate the seismic attenuation and velocity dispersion behaviour associated with wave-induced fluid flow due to both microscopic and mesoscopic heterogeneities and discuss the results obtained for a range of pertinent scenarios.
引用
收藏
页码:882 / 889
页数:8
相关论文
共 50 条
  • [1] Velocity dispersion and attenuation at microscopic and mesoscopic wave-induced fluid flow
    Zhang G.
    He F.
    Zhang J.
    Pei Z.
    Song J.
    Yin X.
    He, Feng (719293723@qq.com), 2017, Science Press (52): : 743 - 751
  • [2] Attenuation of sonic waves in water-saturated alluvial sediments due to wave-induced fluid flow at microscopic, mesoscopic and macroscopic scales
    Milani, Marco
    Rubino, J. German
    Baron, Ludovic
    Sidler, Rolf
    Holliger, Klaus
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2015, 203 (01) : 146 - 157
  • [3] Seismic attenuation due to wave-induced flow
    Pride, SR
    Berryman, JG
    Harris, JM
    JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 2004, 109 (B1)
  • [4] Seismic attenuation due to wave-induced fluid flow in a porous rock with spherical heterogeneities
    Ciz, R.
    Gurevich, B.
    Markov, M.
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2006, 165 (03) : 957 - 968
  • [5] Seismic attenuation due to wave-induced flow:: Why Q in random structures scales differently
    Mueller, T. M.
    Rothert, E.
    GEOPHYSICAL RESEARCH LETTERS, 2006, 33 (16)
  • [6] Seismic wave attenuation and dispersion due to wave-induced fluid flow in rocks with strong permeability fluctuations
    Rubino, J. German
    Monachesi, Leonardo B.
    Mueller, Tobias M.
    Guarracino, Luis
    Holliger, Klaus
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2013, 134 (06): : 4742 - 4751
  • [7] Characteristic frequencies of seismic attenuation due to wave-induced fluid flow in fractured porous media
    Brajanovski, Miroslav
    Mueller, Tobias M.
    Gurevich, Boris
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2006, 166 (02) : 574 - 578
  • [8] Rigorous bounds for seismic dispersion and attenuation due to wave-induced fluid flow in porous rocks
    Gurevich, Boris
    Makarynska, Dina
    GEOPHYSICS, 2012, 77 (06) : L45 - L51
  • [9] An energy-based approach to estimate seismic attenuation due to wave-induced fluid flow in heterogeneous poroelastic media
    Solazzi, Santiago G.
    Rubino, J. German
    Muller, Tobias M.
    Milani, Marco
    Guarracino, Luis
    Holliger, Klaus
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2016, 207 (02) : 823 - 832
  • [10] ATTENUATION OF SEISMIC WAVES DUE TO WAVE-INDUCED FLOW AND SCATTERING IN RANDOMLY HETEROGENEOUS POROELASTIC CONTINUA
    Mueller, Tobias M.
    Gurevich, Boris
    Shapiro, Serge A.
    ADVANCES IN GEOPHYSICS, VOL 50: EARTH HETEROGENEITY AND SCATTERING EFFECTS ON SEISMIC WAVES, 2008, 50 : 123 - 166