The Euler scheme for Levy driven stochastic differential equations

被引:4
|
作者
Protter, P [1 ]
Talay, D
机构
[1] Purdue Univ, Dept Math & Stat, W Lafayette, IN 47907 USA
[2] INRIA, F-06902 Sophia Antipolis, France
来源
ANNALS OF PROBABILITY | 1997年 / 25卷 / 01期
关键词
stochastic differential equations; Levy processes; Euler method; Monte Carlo methods; simulation;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In relation with Monte Carlo methods to solve some integro-differential equations, we study the approximation problem of Eg(X-T) by Eg((X) over bar(T)(n)), where (X-t, 0 less than or equal to t less than or equal to T) is the solution of a stochastic differential equation governed by a Levy process (Z(t)), ((X) over bar(t)(n)) is defined by the Euler discretization scheme with step T/n. With appropriate assumptions on g(.), we show that the error Eg(X-T) - Eg((X) over bar(T)(n)) can be expanded in powers of 1/n if the Levy measure of Z has finite moments of order high enough. Otherwise the rate of convergence is slower and its speed depends on the behavior of the tails of the Levy measure.
引用
收藏
页码:393 / 423
页数:31
相关论文
共 50 条
  • [1] WEAK EULER SCHEME FOR LEVY-DRIVEN STOCHASTIC DIFFERENTIAL EQUATIONS
    Mikulevicius, R.
    Zhang, Ch
    THEORY OF PROBABILITY AND ITS APPLICATIONS, 2018, 63 (02) : 246 - 266
  • [2] The Euler scheme for Levy driven stochastic differential equations: Limit theorems
    Jacod, J
    ANNALS OF PROBABILITY, 2004, 32 (3A): : 1830 - 1872
  • [3] AN EULER-POISSON SCHEME FOR LEVY DRIVEN STOCHASTIC DIFFERENTIAL EQUATIONS
    Ferreiro-Castilla, A.
    Kyprianou, A. E.
    Scheichl, R.
    JOURNAL OF APPLIED PROBABILITY, 2016, 53 (01) : 262 - 278
  • [4] The approximate Euler method for Levy driven stochastic differential equations
    Jacod, J
    Kurtz, TG
    Méléard, S
    Protter, P
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2005, 41 (03): : 523 - 558
  • [5] Law of the Euler scheme for stochastic differential equations
    Z Angew Math Mech ZAMM, Suppl 3 (207):
  • [6] The law of the Euler scheme for stochastic differential equations
    Bally, V
    Protter, P
    Talay, D
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1996, 76 : 207 - 210
  • [7] The Lyapunov exponent of the Euler scheme for stochastic differential equations
    Talay, D
    STOCHASTIC DYNAMICS, 1999, : 241 - 258
  • [8] Euler scheme for density dependent stochastic differential equations
    Hao, Zimo
    Roeckner, Michael
    Zhang, Xicheng
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 274 : 996 - 1014
  • [9] EULER SCHEME FOR REFLECTED STOCHASTIC DIFFERENTIAL-EQUATIONS
    LEPINGLE, D
    MATHEMATICS AND COMPUTERS IN SIMULATION, 1995, 38 (1-3) : 119 - 126
  • [10] Derandomization of the Euler scheme for scalar stochastic differential equations
    Mueller-Gronbach, Thomas
    Ritter, Klaus
    Yaroslavtseva, Larisa
    JOURNAL OF COMPLEXITY, 2012, 28 (02) : 139 - 153