Applying the Conley index to fast-slow systems with one slow variable and an attractor

被引:2
|
作者
Kinney, William M. [1 ]
机构
[1] Bethel Univ, St Paul, MN 55112 USA
关键词
Conley index; attractor; fast-slow system; singular perturbation; Hodgkin-Huxley;
D O I
10.1216/RMJ-2008-38-4-1177
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Chay and Keizer [3] created a five-dimensional model of bursting activity in pancreatic beta-cells which was subsequently reduced to a three-dimensional model by Chay [2]. Kinney has used the Conley index to show that the three-dimensional model has a nonempty attractor [11, pages 451-472]. This paper is intended to provide an introduction to the Conley index by showing how it can be applied to extend these results to prove the existence of a periodic orbit for the three-dimensional model, the existence of a nonempty attractor for the five-dimensional model and the existence of a periodic orbit for the five-dimensional model.
引用
收藏
页码:1177 / 1214
页数:38
相关论文
共 50 条
  • [1] The Conley index for fast-slow systems II: Multidimensional slow variable
    Gedeon, T
    Kokubu, H
    Mischaikow, K
    Oka, H
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2006, 225 (01) : 242 - 307
  • [2] The Conley index for fast-slow systems I. One-dimensional slow variable
    Gedeon T.
    Kokubu H.
    Mischaikow K.
    Oka H.
    Reineck J.F.
    Journal of Dynamics and Differential Equations, 1999, 11 (3) : 427 - 470
  • [5] An Analysis of Fast-Slow Systems
    Nye, V. A.
    IMA JOURNAL OF MATHEMATICAL CONTROL AND INFORMATION, 1985, 2 (04) : 295 - 317
  • [6] DUCK-CYCLES OF FAST-SLOW VECTOR-FIELDS WITH ONE DIMENSIONAL SLOW VARIABLE
    BELIKOV, SA
    SAMBORSKI, SN
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1989, 309 (10): : 673 - 677
  • [7] Conley index theory for slow-fast systems: Multi-dimensional slow manifold
    Oka, H
    EQUADIFF 2003: INTERNATIONAL CONFERENCE ON DIFFERENTIAL EQUATIONS, 2005, : 910 - 915
  • [8] Large Deviations in Fast-Slow Systems
    Bouchet, Freddy
    Grafke, Tobias
    Tangarife, Tomas
    Vanden-Eijnden, Eric
    JOURNAL OF STATISTICAL PHYSICS, 2016, 162 (04) : 793 - 812
  • [9] CANARD CYCLES OF FAST-SLOW FIELDS WITH ONE-DIMENSIONAL SLOW COMPONENT
    BELIKOV, SA
    SAMBORSKII, SN
    MATHEMATICAL NOTES, 1991, 49 (3-4) : 339 - 346
  • [10] The hyperbolic umbilic singularity in fast-slow systems
    Jardon-Kojakhmetov, Hildeberto
    Kuehn, Christian
    Steinert, Maximilian
    NONLINEARITY, 2024, 37 (09)