Disorder-correlation-frequency-controlled diffusion in the Jaynes-Cummings-Hubbard model

被引:8
|
作者
Quach, James Q. [1 ]
机构
[1] Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia
来源
PHYSICAL REVIEW A | 2013年 / 88卷 / 05期
关键词
SINGLE QUANTUM-DOT; CAVITY; PHOTON; TRANSMISSION; ARRAYS; ATOM;
D O I
10.1103/PhysRevA.88.053843
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We investigate time-dependent stochastic disorder in the one-dimensional Jaynes-Cummings-Hubbard model and show that it gives rise to diffusive behavior. We find that disorder correlation frequency is effective in controlling the level of diffusivity. In the defectless system the mean squared displacement (MSD), which is a measure of the diffusivity, increases with increasing disorder frequency. Contrastingly, when static defects are present, the MSD increases with disorder frequency only at lower frequencies; at higher frequencies, increasing disorder frequency actually reduces the MSD.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] From the Jaynes-Cummings-Hubbard to the Dicke model
    Schmidt, S.
    Blatter, G.
    Keeling, J.
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2013, 46 (22)
  • [2] Strong Coupling Theory for the Jaynes-Cummings-Hubbard Model
    Schmidt, S.
    Blatter, G.
    PHYSICAL REVIEW LETTERS, 2009, 103 (08)
  • [3] Dynamical critical exponent of the Jaynes-Cummings-Hubbard model
    Hohenadler, M.
    Aichhorn, M.
    Schmidt, S.
    Pollet, L.
    PHYSICAL REVIEW A, 2011, 84 (04):
  • [4] Ginzburg-Landau theory for the Jaynes-Cummings-Hubbard model
    Nietner, Christian
    Pelster, Axel
    PHYSICAL REVIEW A, 2012, 85 (04):
  • [5] Analytic approximations to the phase diagram of the Jaynes-Cummings-Hubbard model
    Fachbereich Physik and Research Center OPTIMAS, Technische Universität Kaiserslautern, D-67663 Kaiserslautern, Germany
    不详
    Phys Rev A, 5
  • [6] Polariton blockade in the Jaynes-Cummings-Hubbard model with trapped ions
    Ohira, R.
    Kume, S.
    Takahashi, H.
    Toyoda, K.
    QUANTUM SCIENCE AND TECHNOLOGY, 2021, 6 (02)
  • [7] Analytic approximations to the phase diagram of the Jaynes-Cummings-Hubbard model
    Mering, Alexander
    Fleischhauer, Michael
    Ivanov, Peter A.
    Singer, Kilian
    PHYSICAL REVIEW A, 2009, 80 (05):
  • [8] Ginzburg-Landau theory for the Jaynes-Cummings-Hubbard model
    Nietner, Christian
    Pelster, Axel
    Physical Review A - Atomic, Molecular, and Optical Physics, 2012, 85 (04):
  • [9] Two-polariton bound states in the Jaynes-Cummings-Hubbard model
    Wong, Max T. C.
    Law, C. K.
    PHYSICAL REVIEW A, 2011, 83 (05):
  • [10] Two-polariton bound states in the Jaynes-Cummings-Hubbard model
    Wong, Max T.C.
    Law, C.K.
    Physical Review A - Atomic, Molecular, and Optical Physics, 2011, 83 (05):