Dioxygen activation in methane monooxygenase: A theoretical study

被引:115
|
作者
Gherman, BF
Baik, MH
Lippard, SJ [1 ]
Friesner, RA
机构
[1] Columbia Univ, Dept Chem, New York, NY 10027 USA
[2] Columbia Univ, Ctr Biomol Simulat, New York, NY 10027 USA
[3] MIT, Dept Chem, Cambridge, MA 02139 USA
关键词
D O I
10.1021/ja036506+
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Using broken-symmetry unrestricted Density Functional Theory, the mechanism of enzymatic dioxygen activation by the hydroxylase component of soluble methane monooxygenase (MMOH) is determined to atomic detail. After a thorough examination of mechanistic alternatives, an optimal pathway was identified. The diiron(II) state H-red reacts with dioxygen to give a ferromagnetically coupled diiron(II,III) H-superoxo structure, which undergoes intersystem crossing to the antiferromagnetic surface and affords H-peroxo, a symmetric diiron(III) unit with a nonplanar mu-eta(2):eta(2)-O2- binding mode. Homolytic cleavage of the O-O bond yields the catalytically competent intermediate 0, which has a di (mu-oxo)diiron(IV) core. A carboxylate shift involving Glu243 is essential to the formation of the symmetric Hperoxo and Q structures. Both thermodynamic and kinetic features agree well with experimental data, and computed spin-exchange coupling constants are in accord with spectroscopic values. Evidence is presented for pH-independent decay of H-red and H-peroxo. Key electron-transfer steps that occur in the course of generating Q from H-red are also detailed and interpreted. In contrast to prior theoretical studies, a requisite large model has been employed, electron spins and couplings have been treated in a quantitative manner, potential energy surfaces have been extensively explored, and quantitative total energies have been determined along the reaction pathway.
引用
收藏
页码:2978 / 2990
页数:13
相关论文
共 50 条