Long-time behavior of nonlinear integro-differential evolution equations

被引:9
|
作者
Sanchez, Justino [1 ]
Vergara, Vicente [2 ]
机构
[1] Univ La Serena, Dept Matemat, La Serena, Chile
[2] Univ Tarapaca, Inst Alta Invest, Arica, Chile
关键词
Integro-differential evolution equations; Fractional derivative; Gradient sytem; Lyapunov function; Convergence to steady state; Lojasiewicz-Simon inequality; DIFFERENTIAL-EQUATIONS; ASYMPTOTIC-BEHAVIOR; HEAT-CONDUCTION; STEADY-STATES; CONVERGENCE;
D O I
10.1016/j.na.2013.06.006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the long-time behavior as time tends to infinity of globally bounded strong solutions to certain integro-differential equations in Hilbert spaces. Based on an appropriate new Lyapunov function and the Lojasiewicz-Simon inequality, we prove that any globally bounded strong solution converges to a steady state in a real Hilbert space. (c) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:20 / 31
页数:12
相关论文
共 50 条