Real-Time Traffic-Sign Recognition Using Tree Classifiers

被引:90
|
作者
Zaklouta, Fatin [1 ]
Stanciulescu, Bogdan [1 ]
机构
[1] MINES ParisTech, Robot Ctr, F-75272 Paris, France
关键词
Advanced driver-assistance systems; image classification; image processing; machine vision; object detection; object recognition; pattern recognition; traffic sign recognition;
D O I
10.1109/TITS.2012.2225618
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Traffic-sign recognition (TSR) is an essential component of a driver assistance system (DAS), providing drivers with safety and precaution information. In this paper, we evaluate the performance of k-d trees, random forests, and support vector machines (SVMs) for traffic-sign classification using different-sized histogram-of-oriented-gradient (HOG) descriptors and distance transforms (DTs). We also use the Fisher's criterion and random forests for the feature selection to reduce the memory requirements and enhance the performance. We use the German Traffic Sign Recognition Benchmark (GTSRB) data set containing 43 classes and more than 50 000 images.
引用
收藏
页码:1507 / 1514
页数:8
相关论文
共 50 条
  • [1] Compact Hardware Oriented Number Recognition Algorithm for Real-Time Speed Traffic-Sign Recognition
    Yamamoto, Masaharu
    Hoang, Anh-Tuan
    Omori, Mutsumi
    Koide, Tetsushi
    [J]. 2014 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2014, : 2535 - 2538
  • [2] Real-Time Traffic Sign Recognition Using Deep Learning
    Shivayogi, Ananya Belagodu
    Dharmendra, Nehal Chakravarthy Matasagara
    Ramakrishna, Anala Maddur
    Subramanya, Kolala Nagaraju
    [J]. PERTANIKA JOURNAL OF SCIENCE AND TECHNOLOGY, 2023, 31 (01): : 137 - 148
  • [3] Real-Time Traffic Sign Detection and Recognition using CNN
    Santos, D.
    Silva, F.
    Pereira, D.
    Almeida, L.
    Artero, A.
    Piteri, M.
    de Albuquerque, V
    [J]. IEEE LATIN AMERICA TRANSACTIONS, 2020, 18 (03) : 522 - 529
  • [4] Pakistani traffic-sign recognition using transfer learning
    Nadeem, Zain
    Khan, Zainullah
    Mir, Usama
    Mir, Umer Iftikhar
    Khan, Shahnawaz
    Nadeem, Hamza
    Sultan, Junaid
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (06) : 8429 - 8449
  • [5] Pakistani traffic-sign recognition using transfer learning
    Zain Nadeem
    Zainullah Khan
    Usama Mir
    Umer Iftikhar Mir
    Shahnawaz Khan
    Hamza Nadeem
    Junaid Sultan
    [J]. Multimedia Tools and Applications, 2022, 81 : 8429 - 8449
  • [6] Real-Time Traffic Sign Recognition using Color Segmentation and SVM
    Ardianto, Sandy
    Chen, Chih-Jung
    Hang, Hsueh-Ming
    [J]. 2017 INTERNATIONAL CONFERENCE ON SYSTEMS, SIGNALS AND IMAGE PROCESSING (IWSSIP), 2017,
  • [7] Real-Time Traffic Sign Detection and Recognition on FPGA
    Yalcin, Huseyin
    Irmak, Hasan
    Bulut, Mehmet Mete
    Akar, Gozde Bozdagi
    [J]. 2013 21ST SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2013,
  • [8] CNN Design for Real-Time Traffic Sign Recognition
    Shustanov, Alexander
    Yakimov, Pavel
    [J]. 3RD INTERNATIONAL CONFERENCE INFORMATION TECHNOLOGY AND NANOTECHNOLOGY (ITNT-2017), 2017, 201 : 718 - 725
  • [9] Real-time traffic sign recognition in three stages
    Zaklouta, Fatin
    Stanciulescu, Bogdan
    [J]. ROBOTICS AND AUTONOMOUS SYSTEMS, 2014, 62 (01) : 16 - 24
  • [10] A Framework for Real-time Traffic Sign Detection and Recognition using Grassmann Manifolds
    Gupta, Any
    Choudhary, Ayesha
    [J]. 2018 21ST INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), 2018, : 274 - 279