The tail of the stationary distribution of an autoregressive process with ARCH(1) errors

被引:0
|
作者
Borkovec, M [1 ]
Klüppelberg, C [1 ]
机构
[1] Tech Univ Munich, Ctr Math Sci, D-80290 Munich, Germany
来源
ANNALS OF APPLIED PROBABILITY | 2001年 / 11卷 / 04期
关键词
ARCH model; autoregressive process; geometric ergodicity; heavy tail; heteroscedastic model; Markov process; recurrent Harris chain; regular variation; Tauberian theorem;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider the class of autoregressive processes with ARCH(1) errors given by the stochastic difference equation X-n = alphaX(n-1) + rootbeta + lambdaX(n-1)(2) epsilon(n), nis an element of N where (epsilon(n))(nepsilonN) are i.i.d. random variables, Under general and tractable assumptions we show the existence and uniqueness of a stationary distribution. We prove that the stationary distribution has a Paretu-like tail with a well-specified tail index which depends on alpha, lambda and the distribution of the innovations This paper generalizes results for the ARCH(l) process (the case alpha = 0). The generalization requires a new method of proof and we invoke a Tauberian theorem.
引用
收藏
页码:1220 / 1241
页数:22
相关论文
共 50 条