On an accelerating quasi-Newton circular iteration

被引:1
|
作者
Sun, FY [1 ]
Li, XF [1 ]
机构
[1] Hangzhou Univ, Dept Math, Hangzhou 310028, Peoples R China
基金
中国国家自然科学基金;
关键词
interval arithmetic; circular iteration; zeros of polynomial; order of convergence;
D O I
10.1016/S0096-3003(98)10087-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Based on a quasi-Newton circular iteration by Wang and Zheng (X. Wang, S. Zheng, J. Comput. Math. 2 (1984) 305-309), the present paper proposes a parallel circular iteration and investigates its convergence. The general case of this iteration is also considered. (C) 1999 Elsevier Science Inc. All rights reserved.
引用
收藏
页码:17 / 29
页数:13
相关论文
共 50 条
  • [1] Quasi-Newton Iteration in Deterministic Policy Gradient
    Kordabad, Arash Bahari
    Esfahani, Hossein Nejatbakhsh
    Cai, Wenqi
    Gros, Sebastien
    [J]. 2022 AMERICAN CONTROL CONFERENCE, ACC, 2022, : 2124 - 2129
  • [2] On quasi-Newton methods with modified quasi-Newton equation
    Xiao, Wei
    Sun, Fengjian
    [J]. PROCEEDINGS OF 2008 INTERNATIONAL PRE-OLYMPIC CONGRESS ON COMPUTER SCIENCE, VOL II: INFORMATION SCIENCE AND ENGINEERING, 2008, : 359 - 363
  • [3] DIAGONAL SHADOW - A QUASI-NEWTON ITERATION IN SPECTRAL-DOMAIN
    RYSKIN, G
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 1994, 111 (02) : 410 - 413
  • [4] A QUASI-NEWTON METHOD WITH MODIFICATION OF ONE COLUMN PER ITERATION
    MARTINEZ, JM
    [J]. COMPUTING, 1984, 33 (3-4) : 353 - 362
  • [5] A Survey of Quasi-Newton Equations and Quasi-Newton Methods for Optimization
    Chengxian Xu
    Jianzhong Zhang
    [J]. Annals of Operations Research, 2001, 103 : 213 - 234
  • [6] Survey of quasi-Newton equations and quasi-Newton methods for optimization
    Xu, CX
    Zhang, JZ
    [J]. ANNALS OF OPERATIONS RESEARCH, 2001, 103 (1-4) : 213 - 234
  • [7] Radial basis collocation method and quasi-Newton iteration for nonlinear elliptic problems
    Hu, H. Y.
    Chen, J. S.
    [J]. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2008, 24 (03) : 991 - 1017
  • [8] Quasi-Newton waveform iteration for partitioned surface-coupled multiphysics applications
    Rueth, Benjamin
    Uekermann, Benjamin
    Mehl, Miriam
    Birken, Philipp
    Monge, Azahar
    Bungartz, Hans-Joachim
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2021, 122 (19) : 5236 - 5257
  • [9] Properties and numerical performance of quasi-Newton methods with modified quasi-Newton equations
    Zhang, JZ
    Xu, CX
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2001, 137 (02) : 269 - 278
  • [10] A NEW TYPE OF QUASI-NEWTON UPDATING FORMULAS BASED ON THE NEW QUASI-NEWTON EQUATION
    Hassan, Basim A.
    [J]. NUMERICAL ALGEBRA CONTROL AND OPTIMIZATION, 2020, 10 (02): : 227 - 235