Multilingual Open Information Extraction

被引:40
|
作者
Gamallo, Pablo [1 ]
Garcia, Marcos [2 ]
机构
[1] Univ Santiago de Compostela, Ctr Singular Invest Tecnoloxas Informacin CITIUS, Santiago De Compostela, Spain
[2] Cilenis Language Technol, Santiago De Compostela, Spain
来源
关键词
D O I
10.1007/978-3-319-23485-4_72
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Open Information Extraction (OIE) is a recent unsupervised strategy to extract great amounts of basic propositions (verb-based triples) from massive text corpora which scales to Web-size document collections. We propose a multilingual rule-based OIE method that takes as input dependency parses in the CoNLL-X format, identifies argument structures within the dependency parses, and extracts a set of basic propositions from each argument structure. Our method requires no training data and, according to experimental studies, obtains higher recall and higher precision than existing approaches relying on training data. Experiments were performed in three languages: English, Portuguese, and Spanish.
引用
收藏
页码:711 / 722
页数:12
相关论文
共 50 条
  • [1] Multilingual Open Information Extraction: Challenges and Opportunities
    Claro, Daniela Barreiro
    Souza, Marlo
    Xavier, Clarissa Castella
    Oliveira, Leandro
    [J]. INFORMATION, 2019, 10 (07)
  • [2] Multilingual open information extraction: Challenges and opportunities
    Claro, Daniela Barreiro
    Souza, Marlo
    Xavier, Clarissa Castellã
    Oliveira, Leandro
    [J]. Information (Switzerland), 2019, 10 (07):
  • [3] MILIE: Modular & Iterative Multilingual Open Information Extraction
    Kotnis, Bhushan
    Gashteovski, Kiril
    Onoro-Rubio, Daniel
    Shaker, Ammar
    Rodriguez-Tembras, Vanesa
    Takamoto, Makoto
    Niepert, Mathias
    Lawrence, Carolin
    [J]. PROCEEDINGS OF THE 60TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2022), VOL 1: (LONG PAPERS), 2022, : 6939 - 6950
  • [4] DetIE: Multilingual Open Information Extraction Inspired by Object Detection
    Vasilkovsky, Michael
    Alekseev, Anton
    Malykh, Valentin
    Shenbin, Ilya
    Tutubalina, Elena
    Salikhov, Dmitriy
    Stepnov, Mikhail
    Chertok, Andrey
    Nikolenko, Sergey
    [J]. THIRTY-SIXTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FOURTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE / TWELVETH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2022, : 11412 - 11420
  • [5] Logical-linguistic model for multilingual Open Information Extraction
    Khairova, Nina
    Mamyrbayev, Orken
    Mukhsina, Kuralay
    Kolesnyk, Anastasiia
    [J]. COGENT ENGINEERING, 2020, 7 (01):
  • [6] IndIE: A Multilingual Open Information Extraction Tool For Indic Languages
    Mishra, Ritwik
    Singh, Simranjeet
    Shah, Rajiv Ratn
    Kumaraguru, Ponnurangam
    Bhattacharyya, Pushpak
    [J]. 13TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING AND THE 3RD CONFERENCE OF THE ASIA-PACIFIC CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, IJCNLP-AACL 2023, 2023, : 312 - 326
  • [7] Alignment-Augmented Consistent Translation for Multilingual Open Information Extraction
    Kolluru, Keshav
    Muqeeth, Mohammed
    Mittal, Shubham
    Chakrabarti, Soumen
    Mausam
    [J]. PROCEEDINGS OF THE 60TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2022), VOL 1: (LONG PAPERS), 2022, : 2502 - 2517
  • [8] Parallel information extraction system for multilingual information access
    Dini, L
    [J]. ADVANCES IN INTELLIGENT SYSTEMS: CONCEPTS, TOOLS AND APPLICATIONS, 1999, 21 : 179 - 190
  • [9] A Multilingual Information Extraction Pipeline for Investigative Journalism
    Wiedemann, Gregor
    Yimam, Seid Muhie
    Biemann, Chris
    [J]. CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP 2018): PROCEEDINGS OF SYSTEM DEMONSTRATIONS, 2018, : 78 - 83
  • [10] Multilingual single document keyword extraction for information retrieval
    Bracewell, DB
    Ren, FJ
    Kuriowa, S
    [J]. Proceedings of the 2005 IEEE International Conference on Natural Language Processing and Knowledge Engineering (IEEE NLP-KE'05), 2005, : 517 - 522