Automatic Pseudo-invariant Feature Extraction for the Relative Radiometric Normalization of Hyperion Hyperspectral Images

被引:16
|
作者
Kim, Dae Sung [1 ]
Pyeon, Mu Wook [1 ]
Eo, Yang Dam [1 ]
Byun, Young Gi [2 ]
Kim, Yong Il [3 ]
机构
[1] Konkuk Univ, Dept Adv Technol Fus, Seoul 143701, South Korea
[2] Korea Aerosp Res Inst, Satellite Informat Res Ctr, Taejon 350333, South Korea
[3] Seoul Natl Univ, Dept Civil & Environm Engn, Seoul 151742, South Korea
关键词
D O I
10.2747/1548-1603.49.5.755
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
A new relative radiometric normalization approach is presented based on the spectral profile shape of hyperspectral data. We calculate the spectral similarity value of pixels at the same location using spectral angle mapping. The cumulative moving average and its differential values are used to determine the appropriate number of pseudo-invariant features automatically. Band-by-band linear regression of the pseudo-invariant features is used to refine the radiometric normalization results iteratively. We tested the algorithm using six Hyperion data subset images. The proposed method yielded stable results with similar or better performance than other methods for all test sites, when assessed by visual inspection and quantitative analysis.
引用
收藏
页码:755 / 773
页数:19
相关论文
共 50 条
  • [1] A new model for the automatic relative radiometric normalization of multiple images with pseudo-invariant features
    Zhou, Huizhen
    Liu, Shaomin
    He, Jianjun
    Wen, Qiang
    Song, Lisheng
    Ma, Yanfei
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2016, 37 (19) : 4554 - 4573
  • [2] Automatic relative radiometric normalization algorithm based on pseudo-invariant neighborhood
    Deng Xiaolian
    Wang Changyao
    Lei Bangjun
    CISP 2008: FIRST INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, VOL 4, PROCEEDINGS, 2008, : 550 - +
  • [3] A novel automatic method on pseudo-invariant features extraction for enhancing the relative radiometric normalization of high-resolution images
    Xu, Hanzeyu
    Wei, Yuchun
    Li, Xiao
    Zhao, Yadi
    Cheng, Qi
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2021, 42 (16) : 6155 - 6186
  • [4] Radiometric Normalization with Multi-image Pseudo-invariant Features
    Barazzetti, Luigi
    Gianinetto, Marco
    Scaioni, Marco
    FOURTH INTERNATIONAL CONFERENCE ON REMOTE SENSING AND GEOINFORMATION OF THE ENVIRONMENT (RSCY2016), 2016, 9688
  • [5] Automatic Relative Radiometric Normalization of Bi-Temporal Satellite Images Using a Coarse-to-Fine Pseudo-Invariant Features Selection and Fuzzy Integral Fusion Strategies
    Moghimi, Armin
    Mohammadzadeh, Ali
    Celik, Turgay
    Brisco, Brian
    Amani, Meisam
    REMOTE SENSING, 2022, 14 (08)
  • [6] Semi-Automatic Normalization of Multitemporal Remote Images Based on Vegetative Pseudo-Invariant Features
    Garcia-Torres, Luis
    Caballero-Novella, Juan J.
    Gomez-Candon, David
    Isabel De-Castro, Ana
    PLOS ONE, 2014, 9 (03):
  • [7] Comparison of relative radiometric normalization methods using pseudo-invariant features for change detection studies in rural and urban landscapes
    Bao, Nisha
    Lechner, Alex M.
    Fletcher, Andrew
    Mellor, Andrew
    Mulligan, David
    Bai, Zhongke
    JOURNAL OF APPLIED REMOTE SENSING, 2012, 6
  • [8] Automatic Extraction and Optimal Selection of the Pseudo Invariant Features for the Relative Radiometric Normalization in High-Resolution Remote Sensing Imagery
    Shi H.
    Wei Y.
    Xu H.
    Zhou S.
    Cheng Q.
    Journal of Geo-Information Science, 2021, 23 (05): : 903 - 917
  • [9] A Study on Method of Automatic Geospatial Feature Extraction through Relative Radiometric Normalization of High-resolution Satellite Images
    Lee, Dong-Gook
    Lee, Hyun-Jik
    KOREAN JOURNAL OF REMOTE SENSING, 2020, 36 (05) : 917 - 927
  • [10] Radiometric Normalization of Temporal Images Combining Automatic Detection of Pseudo-Invariant Features from the Distance and Similarity Spectral Measures, Density Scatterplot Analysis, and Robust Regression
    de Carvalho Junior, Osmar Abilio
    Guimaraes, Renato Fontes
    Silva, Nilton Correia
    Gillespie, Alan R.
    Trancoso Gomes, Roberto Arnaldo
    Silva, Cristiano Rosa
    Ferreira de Carvalho, Ana Paula
    REMOTE SENSING, 2013, 5 (06): : 2763 - 2794