A NEW COST FUNCTION FOR DNN-BASED SPEECH ENHANCEMENT COMBINING NMF AND CASA

被引:0
|
作者
Yan, Bofang [1 ]
Bao, Changchun [1 ]
Bai, Zhigang [1 ]
机构
[1] Beijing Univ Technol, Fac Informat Technol, Speech & Audio Signal Proc Lab, Beijing 100124, Peoples R China
基金
中国国家自然科学基金;
关键词
Deep neural network; cost function; nonnegative matrix factorization; computational auditory scene analysis; speech enhancement; MONAURAL SPEECH;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, a novel deep neural network (DNN) training approach is proposed for speech enhancement based on nonnegative matrix factorization (NMF) and computational auditory scene analysis (CASA). Considering a higher correlation of NMF algorithm along the frequency bins for the time-varying signals and a high noise making effect of CASA, we propose a new cost function for DNN training, which consists of the ideal ratio mask (IRM) and NMF based Wiener-like filter. Extensive experiments are carried out to verify the performance of the proposed method. Moreover, we compare the performance of the developed algorithm with traditional NMF approach, NMF-based linear minimum mean square error (LMMSE) filter approach and CASA method. Our results demonstrate that the proposed approach improved speech quality greatly.
引用
收藏
页码:255 / 259
页数:5
相关论文
共 50 条
  • [1] DNN-Based Speech Enhancement via Integrating NMF and CASA
    Yan, Bofang
    Bao, Changchun
    Bai, Zhigang
    [J]. 2018 INTERNATIONAL CONFERENCE ON AUDIO, LANGUAGE AND IMAGE PROCESSING (ICALIP), 2018, : 435 - 439
  • [2] DNN-BASED ENHANCEMENT OF NOISY AND REVERBERANT SPEECH
    Zhao, Yan
    Wang, DeLiang
    Merks, Ivo
    Zhang, Tao
    [J]. 2016 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING PROCEEDINGS, 2016, : 6525 - 6529
  • [3] DNN-BASED SPEECH ENHANCEMENT USING MBE MODEL
    Huang, Qizheng
    Bao, Changchun
    Wang, Xianyun
    Xiang, Yang
    [J]. 2018 16TH INTERNATIONAL WORKSHOP ON ACOUSTIC SIGNAL ENHANCEMENT (IWAENC), 2018, : 196 - 200
  • [4] DNN-Based Cepstral Excitation Manipulation for Speech Enhancement
    Elshamy, Samy
    Fingscheidt, Tim
    [J]. IEEE-ACM TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2019, 27 (11) : 1803 - 1814
  • [5] DNN-Based Linear Prediction Residual Enhancement for Speech Dereverberation
    Feng, Xinyang
    Li, Nuo
    He, Zunwen
    Zhang, Yan
    Zhang, Wancheng
    [J]. 2021 ASIA-PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE (APSIPA ASC), 2021, : 541 - 545
  • [6] Boosting DNN-Based Speech Enhancement via Explicit Transformations
    Wang, Qing
    Du, Jun
    Dai, Li-Rong
    [J]. 2016 ASIA-PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE (APSIPA), 2016,
  • [7] DNN-Based Calibrated-Filter Models for Speech Enhancement
    Yazid Attabi
    Benoit Champagne
    Wei-Ping Zhu
    [J]. Circuits, Systems, and Signal Processing, 2021, 40 : 2926 - 2949
  • [8] DNN-BASED AR-WIENER FILTERING FOR SPEECH ENHANCEMENT
    Yang, Yan
    Bao, Changchun
    [J]. 2018 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2018, : 2901 - 2905
  • [9] DNN-Based Calibrated-Filter Models for Speech Enhancement
    Attabi, Yazid
    Champagne, Benoit
    Zhu, Wei-Ping
    [J]. CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2021, 40 (06) : 2926 - 2949
  • [10] A Survey on Low-Latency DNN-Based Speech Enhancement
    Drgas, Szymon
    [J]. SENSORS, 2023, 23 (03)